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Abstract. This paper describes a methodology for error estimation with enhanced assumed
strain elements applied to linear solid mechanics problems, finite elasticity problems and plas-
ticity.
The relation between the enhanced strain modes and the quality of the finite element solution is
analysed for problems of solid mechanics. The analysis is developed in the context of error es-
timation. The contribution of the enhanced strain modes is quantified with an energy norm. The
methodology proposed for error estimation has the advantages of a) being a local formulation,
b) computing the error in an element-by-element way, and c) having a simple interpretation
from a practical point of view.
In the paper firstly the general formulation of the error estimator is described. Following it is
applied to linear and non-linear elasticity and plasticity problems. Representative numerical
simulations are presented for 3D non linear elasticity and Von Mises plasticity, with emphasis
in the distribution of the local error and the global rate of convergence.
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1 INTRODUCTION

The finite element method is a computational tool widely used in the design and verification of
engineering structures. However, obtaining a value of the finite element solution is not the only
issue, it is also necessary to assess the quality of the computed results.

The interest of “a posteriori” error estimators lies on their direct applicability to adaptive re-
finement techniques. The development of these techniques began in the seventies with the pio-
neering works of Babǔska et al [1]. From this time till now, several error estimators have been
proposed for linear analyses, whose efficiency has been proved in a wide variety of problems.

Nevertheless, developments in non linear problems have not been made until recently, and a
number of research lines remain open. We remark the developments of Ortiz and Quigley [2]
in localisation, Johnson and Hansbo [3] in the context of the elastic-plastic model of Hencky,
the error estimator of Barthold et al [4] that is applied to the elastic-plastic models of Hencky
and Prandtl-Reuss, etc. Finally it’s necessary to point out the recent works of Radovitzky and
Ortiz [5] in error estimation for highly non linear problems, including finite deformations in
hyperelasticity, viscoplasticity, dynamics, etc.

In this paper a methodology for error estimation in linear and non linear problems is described.
The proposed method gives a bound of the discretisation error associated to the finite element
solution computed with the standard displacement formulation. This error is computed through
the enhanced assumed strain [6, 7] finite element solution (section2). For error estimation a
variational structure of the boundary value problem is required. This requirement and its influ-
ence in local and global error estimation is analysed in section3. The general expression of the
error estimator is described in section4. The details corresponding to finite elasticity problems
and Von Mises plasticity are explained in section5. Finally, in section6 some representative
numerical simulations are shown, and section7 describes the conclusions.

2 ENHANCED ASSUMED STRAIN FINITE ELEMENT FORMULA-
TION

The enhanced assumed strain(EAS) finite element formulation [6, 7, 8, 9] is based on the
discrete variational equations obtained from the Hu-Washizu functional [10].

The existence of a function of internal energy per unit of volume, in each pointx ∈ Ω, is
assumed. This function may be expressed as function of the infinitesimal strain tensorε for
linear problems, or the deformation gradientF for finite deformation problems.

For infinitesimal strains the key ingredient is the additive decomposition of the strain field in a
compatible part and an enhanced part:

ε = ∇su︸︷︷︸
compatible

+ ε̃︸︷︷︸
enhanced

; (1)

where∇su (symmetric component of displacement gradient) is the“compatible” part of strain
field, and ε̃ is the enhanced (or incompatible) one. This denomination is motivated for the
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enhancement of the approximated solution associated with the incompatible part in discrete
meshes (for the exact solution the fieldε̃ is null). There are no requirements of inter-element
continuity for the enhanced field̃ε.

In EAS formulation for finite deformation problems, the deformation gradient is parametrised
via the following additive decomposition:

F = ∇Xϕ︸ ︷︷ ︸
compatible

+ F̃︸︷︷︸
enhanced

(2)

where∇X is the gradient operator andϕ is the deformation mapping.

3 ERROR ESTIMATION METHODOLOGY BASED ON ENERGY
NORMS

This section describes the general framework for the error estimation methodology. To this end
the variational structure of the boundary value problem, the methodology of approximation
via finite element method and the requirements for the formulation of local and global error
estimators, are explained.

3.1 Variational structure of the boundary value problem

Consider the classical boundary value problem for the equilibrium of a solidΩ ∪ ∂Ω:

div σ + b = 0 in Ω ∪ ∂Ω

u = u in ∂uΩ (3)

σn = t in ∂tΩ

being the displacementsu the unknown field,σ the Cauchy stress tensor,b the body forces,
n the normal vector in∂Ω, andt, u prescribed values. If the boundary value problem (3) has
variational structure, the Dirichlet forma(u)[η,η] associated to the functionalΠ(u) is defined
as:

a(u)[η,η] =

∫

Ω

∂2W (ε, x)

∂εij∂εkl

ηi,jηk,ldΩ (4)

beingη ∈ V : Ω → Rn admissible variations,V is the space of functions with finite energy
andW is the function of internal energy density.

The Dirichlet forma(u)[η,η] is regular if the following conditions are verified:

1. Cijkl =
∂2W (ε,x)

∂εij∂εkl

< ∞, ∀x ∈ Ω ⇔ Cijkl ∈ L∞(Ω,Rn × Rn × Rn × Rn) (5)

2. a(u)[η,η] > C‖η‖2
1,2 C ∈ R+ (coercivity condition) (6)
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whereL∞ is the Lebesgue space of order infinity and‖·‖1,2 is the Sobolev norm with degree1
and order2.

If the Dirichlet form (4) verifies the regularity hypotheses (5, 6), then the following conditions
are asserted:

i) Π is convex

ii) Π has a unique relative minimum; hence, the solutionu of the boundary value problem
verifies:

Π(u) = inf
v∈V

Π(v) (7)

3.2 Methodology of approximation with compatible elements

For infinitesimal elasticity, the variational equation of the principle associated to the functional
Π(u) is:

G(u)[η] = 0 ∀η ∈ V (8)

beingG(u)[η] the weak form derived from the boundary value problem (3):

G(u)[η]
def
=

∫

Ω

div σ · η dΩ−
∫

Ω

b · η dΩ−
∫

∂tΩ

t · η dΓ (9)

Let Vh ⊂ V be a finite dimension subspace ofV , such thatVh approachesV whenh → 0. If
the restriction of (8) only to variationsηh ∈ Vh:

G(u)[ηh] = 0 ∀ηh ∈ Vh (10)

is subtracted from the particularisation of (8) to elements ofVh (displacements and variations):

G(uh)[ηh] = 0 ∀ηh ∈ Vh (11)

the following result is obtained if the weak formG(u)[η] is linear inu:

a(u)[u− uh,ηh] = 0 ∀ηh ∈ Vh (12)

Equation (12) establishes that the finite element solution minimises the value of‖u − uh‖E.
This property is referred to as theoptimal approximation propertyof the finite element method:

‖u− uh‖E = inf
vh∈Vh

‖u− vh‖E (13)
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3.3 Local error estimation

In general, the finite element solution is obtained in the discrete domainΩh, which is constructed
via the discretisation of the domainΩ, usingnel elementsΩe, such that:

nel⋃
e=1

Ωe = Ωh

Ωe
i ∩ Ωe

j = ∅ ∀i 6= j

Let Ωe be an element inRn with positive jacobian determinant, and letPp(Ω
e) be the set of

polynomials overΩe with degree lower or equal thanp. Let ue ∈ H1(Ωe,Rn) be the exact

displacement field in the elemente, and letue
h(x) =

nnode∑
a=1

uaNa(x) ∈ Pp(Ω
e) be the “finite

dimension interpolant polynomial” of the exact solutionue, wherennode is the number of nodes
of the elemente.

The local error function in the elemente is defined as the difference between the exact displace-
ment field and the displacement field computed via the finite element method:

Ee(x) = ue(x)− ue
h(x)

The problem to solve with a local error estimator is to obtain an upper bound of the local error
function, which may be expressed in the following way:

‖ue − ue
h‖ ≤ C(he)α|ue| (14)

where:

C : real positive constant

he : diameter of the circunference circumscribed aroundΩe

|ue| : seminorm ofue

α : rate of convergence

The definition of the semi-norm used in (14) is independent of the definition of the error norm
established. The equality (14) is verified if theoptimal approximation property(13) and the
regularity conditions expressed in (5; 6) are satisfied.

3.4 Global error estimation

From the expression of the interpolation functions ofue(x),

ue
h(x) =

nnode∑
a=1

uaNa(x)
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theGlobal interpolant polynomialuh(x) is defined as:

uh(x) =

nel∑
e=1

ue
h(x)

If the shape functions are conforming, the following is satisfied:ue
h(x) ∈ H1(Ωe,Rn) ⇒

uh(x) ∈ H1(Ω,Rn), whereH1 is the Sobolev space of order1.

In order to write an upper bound of the global error function:E(x) = u(x) − uh(x), the
seminorm ofE(x) used in (14) is expressed as the summation of the contributions of each
element. Using the energy norm, this results in [11]:

|u− uh|1,2 ≤
nel∑
e=1

C
(he)2

ρe
|ue|2,2 (15)

The expression (15) shows that the upper bound of the global error may be expressed as the sum
of the local error bounds computed in each element. Besides, if regularity conditions (5,6) hold
and taking into account the inequality of Poincaré, the semi norm| · |1,2 can be replaced by the
energy norm in (15), resulting:

‖u− uh‖E ≤ C

nel∑
e=1

(he)2

ρe
|ue|2,2 (16)

4 ERROR ESTIMATOR PROPOSED

From a practical point of view, equation (16) is not convenient because the error is expressed in
terms of the unknown exact solutionue. Besides it is not possible to substitute this field by its
approximate solutionue

h, as it is a polynomial of degreek and the seminorm used is of order
k + 1 (Dk+1ue

h = 0).

Error estimation techniques are based on the substitution ofue by another field, in such man-
ner that the estimated error must be a realistic measure. The methodology for performing this
substitution leads to different error estimators.

The error estimator for the solutionuh (obtained with elements formulated in displacements)
analysed in this paper is based on the solutionuenh obtained with the enhanced assumed strain
elements described in section2.

The starting point is the triangular inequality:

‖u− uh‖E ≤ ‖u− uenh‖E + ‖uenh − uh‖E (17)

It is assumed that the rates of convergence are:

‖u− uenh‖E = o(hm) (18)

‖uenh − uh‖E = o(hp) (19)
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Also, at least in the asymptotic regime, the following hypothesis holds:

m > p (20)

In these conditions, at least forh → 0, in the right hand side of equation (17) the first term is
negligible if it is compared to the second one. Therefore it is possible to establish that:

‖u− uh‖E ≤ C‖uenh − uh‖E C ∈ R+ (21)

The hypotheses (18;19;20) may be re-interpreted in the following terms: The solutionsuenh and
uh converge to the exact solution in such manner that

1. ‖uenh − uh‖E decreases with the refinement of the mesh;

2. The solution obtained with enhanced elements is a better approximation to the exact so-
lution than the solution of standard elements to the enhanced ones.

The expression of the local estimator proposed is:

(Ee)2 = ‖ue
enh − ue

h‖E (22)

In accordance to the previous section, the global error may be obtained as the sum of the local
errors:

E2 =

nel∑
i=1

(Ei)2 (23)

The discretisation error associated to the standard elements is quantified via the internal energy
associated to the incompatible modes computed with enhanced elements.

Each component in the sum (23) is local, and therefore the proposed estimator has the important
advantage that is computed element by element, without global smoothing techniques nor sub-
domain solutions.

5 ENERGY CONTRIBUTION OF THE INCOMPATIBLE MODES

In this section the application of (22) to error estimation in non-linear problems is explained.
Finite elasticity problems with hyperelastic constitutive models and small strain problems with
Von Mises plasticity are considered.
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5.1 Finite elasticity

Here the unknown field is the deformation mappingϕ : Ω → Ωt, whereΩ is the reference
configuration andΩt is the deformed configuration at timet. The formulation is similar to
what has been already developed in section3.1, but replacing the displacement fieldu for the
deformationϕ, and the infinitesimal strain tensorε for the deformation gradientF .

With respect to the approximation methodology via standard elements described in3.2, sub-
tracting (10; 11) the following result is obtained:

G(ϕ)[ηh]−G(ϕh)[ηh] = 0 ∀ηh ∈ Vh (24)

This is different to (12), as the Dirichlet forma(ϕ)[·, ·] is non linear in finite elasticity. Nev-
ertheless, for the asymptotic regime(h → 0), the finite element solutionϕh is approximately
equal to the exact solution, and then equation (24) may be linearised resulting in:

a(ϕ)[ϕ−ϕh, ηh] = 0 ∀ηh ∈ Vh, h → 0 (25)

This condition establishes theoptimal approximation propertyof the finite element method, for
finite elasticity, in the asymptotic regime:

‖ϕ−ϕh‖E = inf
vh∈Vh

‖ϕ− vh‖E (26)

The expression of the local error estimator proposed in (22) results:

(Ee)2 = ‖ϕe
enh −ϕe

h‖E (27)

assuming the hypotheses (18; 19; 20) hold.

For the numerical implementation, the value of (27) is computed in the reference configuration.
Then, the expression of the energy norm is [12]:

‖ϕ‖2
E = a(ϕ)[ϕ,ϕ] =

∫

Ω0

∇Xϕ · A∇Xϕ dΩ (28)

whereA is the tangent tensor of constitutive moduli:

A =
∂2W (X,F )

∂F ∂F
=

∂P

∂F
(29)

Simple calculations provide the expression of the error estimator that has been implemented
[12]:

(Ee)2 =
1

2

∫

Ωe

F̃ · AF̃ dΩ (30)

whereF̃ is the enhanced part of the deformation gradient [9].

Computing the global error via (30) extended over all the domainΩ, it can be expressed as the
sum of the local errors:

E2 =

nel∑
i=1

(Ei)2 (31)
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5.2 Plasticity

The methodology for error estimation described in section3 assumes a variational structure
of the boundary value problem. In plasticity, this variational structure may be obtained at an
incremental level via the variational integration of the plasticity equations [13]. The variational
integration postulates the existence of an incremental energy function per unit volumeWt+∆t,
such that

σt+∆t =
∂Wt+∆t

∂εe
t+∆t

(32)

In infinitesimalJ2 plasticity with isotropic hardening, the functional dependence ofWt+∆t is on
elastic strain and effective plastic strainξ. The expression of the incremental potential function
is:

Wt+∆t(ε
e
t+∆t, ξt+∆t, ε

e
t , ξt) = min

ξt+∆t

(
Ψt+∆t(ε

e
t+∆t, ξt+∆t)−Ψt(ε

e
t , ξt)

)
(33)

whereΨ(εe, ξ) is the free energy function. The minimum requirement in the right-hand side of
(33) is equivalent to the condition:

∂Ψt+∆t(ε
e
t+∆t, ξt+∆t)

∂ξt+∆t

= 0 (34)

Assuming that the elastic response is independent of the phenomena associated to unrecoverable
distortions of the crystalline lattice, the free energy function may be expressed via the additive
decomposition in an elastic part and a plastic part. Besides, if the additive decomposition of the
infinitesimal strain tensor is assumed:

Ψ(εe, ξ) = Ψe(εe) + Ψp(ξ); ε = εe + εp, (35)

the incremental potentialWt+∆t can be written as:

Wt+∆t = min
ξt+∆t

(
Ψe

t+∆t(εt+∆t − εp
t+∆t) + Ψp

t+∆t(ξt+∆t)−Ψe
t (εt − εp

t ) + Ψp
t (ξt)

)
(36)

The optimisation condition (34) applied to (36), leads to the following expression [12]:

(
J2,t+∆t

)2
=

2

3

∂Ψp

∂ξt+∆t

(37)

whereJ2 is the second invariant of the deviatoric part of the stress tensor.

In this situation the Dirichlet form of the boundary value problem is:

a(ut+∆t)[η, η] =

∫

Ω

∇sη · ∂2Wt+∆t

∂εt+∆t∂εt+∆t

∇sη dΩ (38)
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If the Dirichlet form (38) verifies (5, 6) then it is regular and is applicable the error estimation
methodology described in previous sections.

The local error estimator for this kind of problems is:

(Ee
∆t)

2 = ‖ue
enht+∆t

− ue
ht+∆t

‖E (39)

The error bound proposed in (39) is an incremental bound. In order to evaluate the discretisation
error along the load path, it is necessary to determine the integral ofEe

∆t over the time:

Ee
t+∆t =

∫ t+∆t

0

Ee
∆tdt (40)

Using the incremental functionWt+∆t, the error estimator is interpreted as the contribution of
the incompatible modes of the free energy function:

(Ee
∆t)

2 =

∫

Ωe

Wt+∆t

(
εe

t+∆t − εe
t+∆t(u), ξt+∆t − ξt+∆t(u), εe

t − εe
t (u), ξt − ξt(u)

)
dΩ (41)

The energy density in (41) can be decomposed in an additive way with the contributions of the
elastic and plastic part of the of the free energy, resulting in:

(Ee
∆t)

2 =

∫

Ωe

W e
t+∆t

(
εe

t+∆t − εe
t+∆t(u), εe

t − εe
t (u)

)
dΩ +

∫

Ωe

W p
t+∆t (ξt+∆t − ξt+∆t(u), ξt − ξt(u)) dΩ (42)

The global discretisation error is obtained extending the integral in (41) to the complete domain
Ω. Then, the global error is computed via the summation of the local errors:

E2
∆t =

nel∑
i=1

(Ei
∆t)

2 (43)

6 NUMERICAL SIMULATIONS

6.1 3-D Finite elasticity. Cantilever beam.

This example analyses the 3D cantilever beam of figure1, with dimensionsL = 3, h = 1 and
b = 1. The edgeAB has an imposed displacement equal to the depth of the beamh, leading to
the deformed mesh showed in figure1. The hyperelastic constitutive model has the following
energy function:

W (C) =
1

2
λ(log J)2 − µ log(J) +

1

2
µ(trace(C)− 3) (44)

with C the right Cauchy tensor,J the determinant of the deformation gradient and (λ, µ) the
Lamé parameters. The numerical values adopted are:λ = 11538.5, µ = 7692.3
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Figure 1:3D cantilever beam. Geometry, boundary conditions and deformed mesh.

For error estimation five meshes have been considered with the following elements along length,
height and thickness respectively:2× 2× 1, 4× 2× 2, 8× 4× 4, 12× 6× 6 and16× 8× 8.

Figure2 shows the curves of the energy norm obtained with enhanced elements and the global
error estimated at the end of the computation, versus the degrees of freedom considered. The
values of the error estimator obtained predict an order of convergence similar to1/2: the exact
one-half slope plotted in double logarithmic scale is well adjusted to the rate of convergence
obtained in the computations.

0.01

0.1

1

10

100

10 100 1000 10000

E
rr

or
,
E

ne
rg

y

N (DOF)

Hyperelastic cantilever

Estimated error
|| ϕ ||E

Rate of convergence 1/2

Figure 2:3D cantilever beam. Evolution of global error and energy norm versus the number of
D.O.F.

Finally, figure3 shows the local error contours at the end of the process for some of the meshes.
The greatest values appears near the edges with imposed displacements (AB and the clamped
edge).
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Figure 3:3D cantilever beam. Contours of local error.

6.2 Plasticity. Undrained embankment.

The last example concerns a slope stability problem in plain strain. One half of the embankment
is considered in the analysis as shown in figure4, where the vertical face is taken to be a
symmetry axis and the lateral surface subtends a45◦ slope. The embankment, with an increasing
gravity load, rests on a rigid surface with no relative displacements over the foundation. The
analyses were carried out with meshes of6×6, 12×12, 24×24, 36×36 and48×48 elements.

The material was assumed to exhibit undrained response resulting in no changes of volumetric
strains during deformation. The elastic properties adopted for the analysis are a Young’s modu-
lusE = 2 · 108, a Poisson’s ratioν = 0.25. The material exhibits elastic-plastic behaviour with
no friction angle and initial cohesionc = 2000. A constant hardening modulusH = 2 · 103 is
considered relating the yield stress with the effective plastic strain.

The computed force-displacement curves of pointA (see figure4) for each mesh are shown
in figure 5. The reference value of the gravity load is2000. In all the analyses a limit load is
predicted by the calculations.
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Figure 4:Undrained embankment. Geometry and boundary conditions.
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Figure 5:Undrained embankment. Displacement of upper left corner versus load factor.

In figure6 the global error estimator is plotted versus the number of degrees of freedom. The rate
of convergence predicted is approximated equal to1/8 for the first refinement. It is remarkable
that energy increases with refinement whereas the global error decreases as the mesh is refined.

Figures7 and8 show the evolution of the elastic part and the plastic part of the accumulated
local error computed for the lower left element (shadowed in figure4). These values are obtained
via the additive decomposition of the incremental error expressed in (42). Both of them decrease
with refinement of the mesh. Besides, the two components increase during the load process and
their order of magnitude are similar. These conclusions are similar to those obtained in other
examples ([12],[14])

Finally, figure9 shows the contours of local error computed for a load factor of0.53. The value
of local error decreases with refinement and tends to localise along a slide line.
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Figure 6:Undrained embankment. Global error versus D.O.F. (load factor= 0.53).
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Figure 7:Undrained embankment. Evolution of the elastic part of accumulated local error for
the lower left element.
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Figure 8:Undrained embankment. Evolution of the plastic part of accumulated local error for
the lower left element.
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Figure 9:Undrained embankment. Contours of local error (load factor=0.53).
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7 CONCLUSIONS

A methodology for error estimation valid for linear and non linear problems has been described.
The error estimator is based on the energy contribution of incompatible modes and in conse-
quence the estimated error is zero for the patch test strain modes. It has been applied to non-
linear finite elasticity and Von-Mises elastic-plastic problems with a formulation which has
variational structure at incremental level.

The error estimator proposed establishes a measure of the discretisation error obtained with
standard elements, from the solution computed with enhanced assumed strain elements. It is
formulated in a local manner and evaluated element by element without smoothing techniques.

Finally, the numerical examples analysed have shown that the results obtained with the proposed
method for error estimation are good.
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