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Abstract. This paper describes a methodology for error estimation with enhanced assumed
strain elements applied to linear solid mechanics problems, finite elasticity problems and plas-
ticity.

The relation between the enhanced strain modes and the quality of the finite element solution is
analysed for problems of solid mechanics. The analysis is developed in the context of error es-
timation. The contribution of the enhanced strain modes is quantified with an energy norm. The
methodology proposed for error estimation has the advantages of a) being a local formulation,
b) computing the error in an element-by-element way, and c) having a simple interpretation
from a practical point of view.

In the paper firstly the general formulation of the error estimator is described. Following it is
applied to linear and non-linear elasticity and plasticity problems. Representative numerical
simulations are presented for 3D non linear elasticity and Von Mises plasticity, with emphasis
in the distribution of the local error and the global rate of convergence.
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1 INTRODUCTION

The finite element method is a computational tool widely used in the design and verification of
engineering structures. However, obtaining a value of the finite element solution is not the only
issue, it is also necessary to assess the quality of the computed results.

The interest of “a posteriori” error estimators lies on their direct applicability to adaptive re-
finement techniques. The development of these techniques began in the seventies with the pio-
neering works of Balika et al []. From this time till now, several error estimators have been
proposed for linear analyses, whose efficiency has been proved in a wide variety of problems.

Nevertheless, developments in non linear problems have not been made until recently, and a
number of research lines remain open. We remark the developments of Ortiz and Qtiigley [

in localisation, Johnson and Hansk{) in the context of the elastic-plastic model of Hencky,

the error estimator of Barthold et &][that is applied to the elastic-plastic models of Hencky

and Prandtl-Reuss, etc. Finally it's necessary to point out the recent works of Radovitzky and
Ortiz [5] in error estimation for highly non linear problems, including finite deformations in
hyperelasticity, viscoplasticity, dynamics, etc.

In this paper a methodology for error estimation in linear and non linear problems is described.
The proposed method gives a bound of the discretisation error associated to the finite element
solution computed with the standard displacement formulation. This error is computed through
the enhanced assumed strain {] finite element solution (sectioR). For error estimation a
variational structure of the boundary value problem is required. This requirement and its influ-
ence in local and global error estimation is analysed in se@tidime general expression of the

error estimator is described in sectidnThe details corresponding to finite elasticity problems

and Von Mises plasticity are explained in secti@rFinally, in sectioné some representative
numerical simulations are shown, and sectiatescribes the conclusions.

2 ENHANCED ASSUMED STRAIN FINITE ELEMENT FORMULA-
TION

The enhanced assumed strafBAS) finite element formulationt 7, 8, 9] is based on the
discrete variational equations obtained from the Hu-Washizu functianfl [

The existence of a function of internal energy per unit of volume, in each poiat 2, is
assumed. This function may be expressed as function of the infinitesimal strain ¢efugor
linear problems, or the deformation gradidnfor finite deformation problems.

For infinitesimal strains the key ingredient is the additive decomposition of the strain field in a
compatible part and an enhanced part:
e= YV'u + € ; (1)

compatible  enhanced

whereV*u (symmetric component of displacement gradient) is‘timenpatible” part of strain
field, ande is the enhanced (or incompatible) one. This denomination is motivated for the
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enhancement of the approximated solution associated with the incompatible part in discrete
meshes (for the exact solution the fi@lds null). There are no requirements of inter-element
continuity for the enhanced fiekl

In EAS formulation for finite deformation problems, the deformation gradient is parametrised
via the following additive decomposition:

F = VXgO + F (2)

compatible enhanced

whereV y is the gradient operator angdlis the deformation mapping.

3 ERROR ESTIMATION METHODOLOGY BASED ON ENERGY
NORMS

This section describes the general framework for the error estimation methodology. To this end
the variational structure of the boundary value problem, the methodology of approximation
via finite element method and the requirements for the formulation of local and global error
estimators, are explained.

3.1 \Variational structure of the boundary value problem

Consider the classical boundary value problem for the equilibrium of a Qalid:

dive+b=0 in QU oN
w=u  ind0 3)
t in 0,Q

on —

being the displacements the unknown fieldg the Cauchy stress tensarthe body forces,
n the normal vector i, andt, w prescribed values. If the boundary value problénhas
variational structure, the Dirichlet form(u)[n, n] associated to the functionBl(w) is defined
as:

0?W (g, x)

i€ 4
o 88lj8€kl 77 ,]nk‘,l ( )

a(u)n,n] =

beingn € V :  — R™ admissible variations; is the space of functions with finite energy
andW is the function of internal energy density.

The Dirichlet forma(u)[n, n] is regularif the following conditions are verified:

2

L = IWET)  va e e e LR x R x RY x RY)  (5)
c%ijaekl

2. a(u)n,n] > C|n|i, C eR" (coercivity condition) (6)
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whereL> is the Lebesgue space of order infinity dhl, - is the Sobolev norm with degrde
and order.

If the Dirichlet form (4) verifies the regularity hypothesées ©), then the following conditions
are asserted:

i) ITis convex

i) II has a unique relative minimum; hence, the solutioaf the boundary value problem
verifies:

II(w) = inf II(v) (7)

veV

3.2 Methodology of approximation with compatible elements

For infinitesimal elasticity, the variational equation of the principle associated to the functional
() is:

Glu)ln]=0  vpeV (8)

beingG(u)[n] the weak form derived from the boundary value probl&mn (

Gluln ® [

diva-ndQ—/b-ndQ—/ t-ndl 9)
Q 0 EXS

Let V}, C V be a finite dimension subspace6f such thatl}, approache$” whenh — 0. If
the restriction of §) only to variationsn,, € V;:

G(uw)[n,) =0 Vn, €V (10)
is subtracted from the particularisation 8j (o elements o/, (displacements and variations):
Gup)m] =0 Vm, €V, (11)
the following result is obtained if the weak for@(w)[n] is linear inw:
a(u)[u —up,n,| =0 Vn, €V, (12)

Equation (2) establishes that the finite element solution minimises the valulg.6f uy|| .
This property is referred to as tloptimal approximation propertgf the finite element method:

|lu—up|p = inf [[u—wve (13)
'thVh
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3.3 Local error estimation

In general, the finite element solution is obtained in the discrete dantainhich is constructed
via the discretisation of the domain usingn,.; element£2¢, such that:

Nel

UQe = O,

e=1

QNQ; = 0 Yi#j

Let Q° be an element ilR™ with positive jacobian determinant, and [B§(€2°) be the set of
polynomials over2¢ with degree lower or equal than Let u¢ € H'(Q¢ R") be the exact

Nnode

displacement field in the element and letuj (x) = Z u,N,(x) € P,(2°) be the “finite

a=1
dimension interpolant polynomial” of the exact solutiefy wheren,,.q. is the number of nodes
of the element.

The local error function in the elements defined as the difference between the exact displace-
ment field and the displacement field computed via the finite element method:

Ef(z) = u’(z) — uj(z)

The problem to solve with a local error estimator is to obtain an upper bound of the local error
function, which may be expressed in the following way:

lu® = ]| < C(h%)*u] (14)

where:

C : real positive constant

h¢ : diameter of the circunference circumscribed arofifid
|lu®| : seminorm ofu®
a : rate of convergence

The definition of the semi-norm used ih4) is independent of the definition of the error norm
established. The equality ) is verified if theoptimal approximation propertyl3) and the
regularity conditions expressed if; ©) are satisfied.

3.4 Global error estimation

From the expression of the interpolation functions®fz),

Nnode

up(x) = Z U, No ()
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the Global interpolant polynomials;, () is defined as:

Nel

un(@) = Y u ()

If the shape functions are conforming, the following is satisfiefiiz) € H'(Q° R") =
uy(x) € H'(Q,R"), whereH! is the Sobolev space of ordéer

In order to write an upper bound of the global error functi@(x) = w(x) — u,(x), the
seminorm of E(x) used in (4) is expressed as the summation of the contributions of each
element. Using the energy norm, this results’if|{

SN
lu —upli2 < ZC Pz w20 (15)
e=1

The expressionl®) shows that the upper bound of the global error may be expressed as the sum
of the local error bounds computed in each element. Besides, if regularity condijépkdld

and taking into account the inequality of Poireathe semi norm- |, » can be replaced by the
energy norm in15), resulting:

< (h9)? .
lw = wnlle < CD > U2, (16)
e=1

4 ERROR ESTIMATOR PROPOSED

From a practical point of view, equatiof) is not convenient because the error is expressed in
terms of the unknown exact solutiarf. Besides it is not possible to substitute this field by its
approximate solutiom$, as it is a polynomial of degrefe and the seminorm used is of order
k+1(DFug =0).

Error estimation techniques are based on the substitutiatf bfy another field, in such man-
ner that the estimated error must be a realistic measure. The methodology for performing this
substitution leads to different error estimators.

The error estimator for the solutiam, (obtained with elements formulated in displacements)
analysed in this paper is based on the solutign, obtained with the enhanced assumed strain
elements described in secti@n

The starting point is the triangular inequality:
lu —up|g < U — Uenn||E + [|Uenn — unl|E (17)

It is assumed that the rates of convergence are:

|u — Uenn||lz = o(h™) (18)
[tenn — unllz = ofh”) (19)
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Also, at least in the asymptotic regime, the following hypothesis holds:

m>p (20)

In these conditions, at least far— 0, in the right hand side of equatiofq) the first term is
negligible if it is compared to the second one. Therefore it is possible to establish that:

| —upllp < Ol tern — uplle C € RT (21)

The hypothesedl g;19;20) may be re-interpreted in the following terms: The solutiags, and
uy, converge to the exact solution in such manner that

1. ||wenn — up ||z decreases with the refinement of the mesh;

2. The solution obtained with enhanced elements is a better approximation to the exact so-
lution than the solution of standard elements to the enhanced ones.

The expression of the local estimator proposed is:

(E)* = llugu — uhlle (22)

enh —

In accordance to the previous section, the global error may be obtained as the sum of the local
errors:

Nel

E* =) (B (23)

=1

The discretisation error associated to the standard elements is quantified via the internal energy
associated to the incompatible modes computed with enhanced elements.

Each component in the surj) is local, and therefore the proposed estimator has the important
advantage that is computed element by element, without global smoothing techniques nor sub-
domain solutions.

5 ENERGY CONTRIBUTION OF THE INCOMPATIBLE MODES

In this section the application of®) to error estimation in non-linear problems is explained.
Finite elasticity problems with hyperelastic constitutive models and small strain problems with
Von Mises plasticity are considered.
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5.1 Finite elasticity

Here the unknown field is the deformation mappipg 2 — €, where(? is the reference
configuration and?; is the deformed configuration at timte The formulation is similar to
what has been already developed in secdi but replacing the displacement fieldfor the
deformationy, and the infinitesimal strain tenserfor the deformation gradierf'.

With respect to the approximation methodology via standard elements descriBet] sub-
tracting (L0; 11) the following result is obtained:

G(p)nn — Gep)n] =0 Y, €V (24)

This is different to {2), as the Dirichlet formu(¢)]-, -] is non linearin finite elasticity. Nev-
ertheless, for the asymptotic regirfle — 0), the finite element solutiop, is approximately
equal to the exact solution, and then equati®f) (nay be linearised resulting in:

a()le —pnm) =0 Vn, €V, h—0 (25)

This condition establishes tloptimal approximation propertgf the finite element method, for
finite elasticity, in the asymptotic regime:

e —pulle = inf [[¢—v4lg (26)
vREV)

The expression of the local error estimator propose@ i results:
(E°)? = It — #ille (27)

assuming the hypothesel3( 19; 20) hold.

For the numerical implementation, the value #f)is computed in the reference configuration.
Then, the expression of the energy normlis|{

el = ale)le, ¢] = | Vxe AVxepdd (28)
0
whereA is the tangent tensor of constitutive moduli:
A PW(X,F) 0_P
~ OF0F  0F
Simple calculations provide the expression of the error estimator that has been implemented

[17]:

(29)

1 ~ ~
(E%)? = 5| F AF df (30)
QE

whereF is the enhanced part of the deformation gradiéht [

Computing the global error vié8()) extended over all the domasp, it can be expressed as the
sum of the local errors:

Nel

E* =) (B (31)

=1
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5.2 Plasticity

The methodology for error estimation described in secBassumes a variational structure

of the boundary value problem. In plasticity, this variational structure may be obtained at an
incremental level via the variational integration of the plasticity equatiofs The variational
integration postulates the existence of an incremental energy function per unit Vidlume

such that

aWt+At
(5
a€t+At

OtrAt = (32)

In infinitesimal J, plasticity with isotropic hardening, the functional dependendd’af,, is on
elastic strain and effective plastic strginThe expression of the incremental potential function
is:

Wi at(€fae Seran €7, 6) = gmil (Perne(Efy a Erar) — Teler, &) (33)
t+At

whereV (e, £) is the free energy function. The minimum requirement in the right-hand side of
(33) is equivalent to the condition:

OVt at(€7 4 A Evat)
&ty At

=0 (34)

Assuming that the elastic response is independent of the phenomena associated to unrecoverable
distortions of the crystalline lattice, the free energy function may be expressed via the additive
decomposition in an elastic part and a plastic part. Besides, if the additive decomposition of the
infinitesimal strain tensor is assumed:

V(e &) = U (e) + WP (&); € =¢e°+ P, (35)

the incremental potentidl/; , ; can be written as:

Wivar = gmin (U5 ni(Errar — €7 a) + U1 (Erar) — Vi(e, — €F) + U7 (&)) (36)

t+At

The optimisation condition34) applied to 86), leads to the following expressiof]:

2 0vP
Jo, ) =2
( 2»t+At) 3 8€t+At

(37)

where.J; is the second invariant of the deviatoric part of the stress tensor.

In this situation the Dirichlet form of the boundary value problem is:

*Wii a

V" d) 38
" O€14 A0 At g (38)

ol sl = [ ¥
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If the Dirichlet form (38) verifies €, 6) then it is regular and is applicable the error estimation
methodology described in previous sections.

The local error estimator for this kind of problems is:

The error bound proposed i&9) is an incremental bound. In order to evaluate the discretisation
error along the load path, it is necessary to determine the integf] obver the time:

t+At
EtB+At = /0 Etht (40)

Using the incremental functioW, . o, the error estimator is interpreted as the contribution of
the incompatible modes of the free energy function:

(EZt)Q = /Q Witae (€§+At —efiac(w), Sine — Srpae(u), 67 — €7 (u), & — &(’u)) d) (41)

The energy density ii(l) can be decomposed in an additive way with the contributions of the
elastic and plastic part of the of the free energy, resulting in:

(ES,)? / oan (65 as — €8 a(w), €5 — e5(w)) dO2 +
/Q thJrAt (ft+At - ft+At(u)a & — ft(u)) dS2 (42)

The global discretisation error is obtained extending the integrdllint¢ the complete domain
Q2. Then, the global error is computed via the summation of the local errors:

Nel

Eit = Z(EZAJ)2 (43)

i=1

6 NUMERICAL SIMULATIONS

6.1 3-D Finite elasticity. Cantilever beam.

This example analyses the 3D cantilever beam of figuseith dimensions. = 3, h = 1 and

b = 1. The edged B has an imposed displacement equal to the depth of the hebrading to
the deformed mesh showed in figureThe hyperelastic constitutive model has the following
energy function:

W(C) = %A(log )% — plog(J) + %u(trace(C) _3) (44)

with C the right Cauchy tensot] the determinant of the deformation gradient aid() the
Lameé parameters. The numerical values adopted)are11538.5, u = 7692.3

10
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Pinned

Figure 1:3D cantilever beam. Geometry, boundary conditions and deformed mesh.

For error estimation five meshes have been considered with the following elements along length,
height and thickness respectivelyx 2 x 1,4 x 2 x 2,8 x4 x 4,12 x 6 x 6 and16 x 8 x 8.

Figure2 shows the curves of the energy norm obtained with enhanced elements and the global
error estimated at the end of the computation, versus the degrees of freedom considered. The
values of the error estimator obtained predict an order of convergence simil&r:tthe exact
one-half slope plotted in double logarithmic scale is well adjusted to the rate of convergence
obtained in the computations.

Hyperelastic cantilever

100 g T T T T T T T T T T3
F Estimated error —o— |3
i e lle -+ |7
Rate of convergence 1/2
10 E S R e e FfF E
o £ ~— E
o0 C T ]
g i e — i
= 1 E i
= E E
3 F ]
= - ]
= I \\\ T
0.1 E = E
E \\\\ ;
i T ]
0.01 ' :
10 100 1000 10000
N (DOF)

Figure 2:3D cantilever beam. Evolution of global error and energy norm versus the number of
D.O.F.

Finally, figure3 shows the local error contours at the end of the process for some of the meshes.
The greatest values appears near the edges with imposed displaceAremisd the clamped
edge).

11
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LOCAL ERROR LOCAL ERROR
3.40E-01
6.51E-01
9.61E-01
1.27E+00
1.58E+00
1.89E+00
2.20E+00
2.51E+00

1.59E-02
9.76E-02
1.79E-01
2.61E-01
3.43E-01
4.24E-01
5.06E-01
5.88E-01

4 x 2 x 2 elements

LOCAL ERROR LOCAL ERROR
4.62E-03
4.69E-02
8.93E-02
1.32E-01
1.74E-01
2.16E-01
2.59E-01
3.01E-01

2.75E-03
3.22E-02
6.17E-02
9.11E-02
1.21E-01
1.50E-01
1.80E-01
2.09E-01

8 x 4 x 4 elements 12 X 6 x 6 elements

Figure 3:3D cantilever beam. Contours of local error.

6.2 Plasticity. Undrained embankment.

The last example concerns a slope stability problem in plain strain. One half of the embankment
is considered in the analysis as shown in figdrevhere the vertical face is taken to be a
symmetry axis and the lateral surface subtends &lope. The embankment, with an increasing
gravity load, rests on a rigid surface with no relative displacements over the foundation. The
analyses were carried out with meshes &f6, 12 x 12, 24 x 24, 36 x 36 and48 x 48 elements.

The material was assumed to exhibit undrained response resulting in no changes of volumetric
strains during deformation. The elastic properties adopted for the analysis are a Young’s modu-
lus E = 2108, a Poisson’s ratie = 0.25. The material exhibits elastic-plastic behaviour with

no friction angle and initial cohesian= 2000. A constant hardening modulus = 2 - 103 is
considered relating the yield stress with the effective plastic strain.

The computed force-displacement curves of poinfsee figure4) for each mesh are shown
in figure 5. The reference value of the gravity load2@00. In all the analyses a limit load is
predicted by the calculations.

12
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Figure 4:.Undrained embankment. Geometry and boundary conditions.

T , ,
" 6 x 6 elements ------- -
12 x 12 elements ------
" 36 x 36 elements ------ —
g \ - s
é \w elements
g TSl
@ \ \
= \ I
8
= -1
z
A |
-1.5 i
-2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Load factor

Figure 5:Undrained embankment. Displacement of upper left corner versus load factor.

In figure6 the global error estimator is plotted versus the number of degrees of freedom. The rate
of convergence predicted is approximated equdl/tfor the first refinement. It is remarkable
that energy increases with refinement whereas the global error decreases as the mesh is refined.

Figures7 and8 show the evolution of the elastic part and the plastic part of the accumulated
local error computed for the lower left element (shadowed in figur€hese values are obtained

via the additive decomposition of the incremental error expressé@)jngoth of them decrease

with refinement of the mesh. Besides, the two components increase during the load process and
their order of magnitude are similar. These conclusions are similar to those obtained in other

examples ([7],[14])
Finally, figure9 shows the contours of local error computed for a load factor®. The value
of local error decreases with refinement and tends to localise along a slide line.

13
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T T T T TTTTT T T T 177
Error cstimatqd -
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0.1
10 100 1000 10000
N (DOF)

Figure 6:Undrained embankment. Global error versus D.O.F. (load faetor53).

1.4 T T
6 X 6 elements
12 | 12 x 12 elements -------
’ 24 x 24 elements ------
L 48 x 48 elements ------
z 0.8
) ;
=) Il
B 0.6 /
0.4 —
02 ——mF——F—F——— o e
0 _%—,:r:.:f:.:ff_l S s Eoispramt L
0 0.1 0.2 0.3 0.4 0.5 0.6

Load factor

Figure 7:Undrained embankment. Evolution of the elastic part of accumulated local error for
the lower left element.

14
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1.6 .

T
6 x 6 elements
1.4 12 x 12 elements ------- /

24 x 24 elements --------

1.2 - 36 x 36 elements -----
48 x 48 elements ------ /

>
o0
g 0-8 / I/'
A /

0.6 A

0.4 /

0.2

0 e
0 0.1 0.2 0.3 0.4 0.5 0.6

Load factor

Figure 8:Undrained embankment. Evolution of the plastic part of accumulated local error for
the lower left element.

LOCAL ERROR

LOCAL ERROR

2.30E-01

12 x 12 elements

LOCAL ERROR

36 x 36 elements

24 x 24 elements

48 x 48 elements

0.00E+00 0.00E+00
5.96E-04 1.02E-04
8.48E-03 8.08E-03
1.64E-02 1.61E-02
2.42E-02 2.40E-02
3.21E-02 3.20E-02
4.00E-02 4.00E-02

2.14E-01

LOCAL ERRO

0.00E+00 0.00E+00
2.97E-05 1.24E-05
8.02E-03 8.01E-03
1.60E-02 1.60E-02
2.40E-02 2.40E-02
3.20E-02 3.20E-02
4.00E-02 4.00E-02
2.12E-01 2.09E-01

Figure 9:Undrained embankment. Contours of local error (load factor=0.53).
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7 CONCLUSIONS

A methodology for error estimation valid for linear and non linear problems has been described.
The error estimator is based on the energy contribution of incompatible modes and in conse-
guence the estimated error is zero for the patch test strain modes. It has been applied to non-
linear finite elasticity and Von-Mises elastic-plastic problems with a formulation which has
variational structure at incremental level.

The error estimator proposed establishes a measure of the discretisation error obtained with
standard elements, from the solution computed with enhanced assumed strain elements. It is
formulated in a local manner and evaluated element by element without smoothing techniques.

Finally, the numerical examples analysed have shown that the results obtained with the proposed
method for error estimation are good.
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