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ABSTRACT: Trains at speeds above200 km/h may induce resonance in bridges or viaducts. This fact implies
the necessity of sufficiently detailed dynamic calculations, which has been included in the latest engineering
codes of practise (FS 1997; prEN 1991-2 2002; IAPF 2001).
Various mathematical models are available for dynamic analysis of trains of moving loads, generally through
direct time integration of the equations of motion. Some simplified analytical methods are also available (ERRI
D214 (a) 1998) which provide directly dynamic envelopes. However, these methods are only valid for simply-
supported beams. In some cases it may be necessary to employ complex models with vehicle-bridge interaction.
In this paper we discuss the applicability of the above methods for calculation of railway bridges. Following,
two practical studies applying the above techniques are presented. For portal frame underpasses, a simplified
method of calculation is justified which may greatly simplify engineering calculations. Finally, we also present
results of a study evaluating the relative reduction in dynamic effects which may be obtained by considering
vehicle-bridge interaction.

1 INTRODUCTION

The construction of new high speed railway infras-
tructure constitutes currently in many European na-
tions one of the major civil engineering efforts. Con-
cerning railway bridges, one of the main design is-
sues has always been the dynamic (moving) loads, for
which basic solutions have been described by (Tim-
oshenko and Young 1955), being discussed fully in
(Fryba 1972; Fryba 1996).

Most engineering design codes for railway bridges
have followed the approach of a dynamic factor pro-
posed in (UIC 1979), which takes into account the
dynamic effect of a single moving load and yields
a maximum dynamic increment ofϕ′ = 132% for a
track without irregularities. (To be taken into account
via a factorΦ = 1 + ϕ′ which multiplies the static ef-
fects.) This approach does not cover the possibility of
resonant response of the bridge due to a periodic array
of moving loads, as this phenomenon does not appear
for train speeds below 200 km/h.

However, resonance is all too real for high speed
railways, and its effects may surpass largely that of a
single moving load. An illustrative example is docu-
mented with experimental measurements and model
predictions in (Domínguez Barbero 2001) for the

Spanish AVE crossing the Tagus bridge. New Euro-
pean codes include the need for dynamic calculations
covering resonant behaviour (FS 1997; prEN 1991-2
2002; IAPF 2001).

For the purpose of dynamic analysis of railway
bridges several methods are available. The simplest
ones are based on sums of harmonic terms, which pro-
vide bounds for dynamic response (ERRI D214 (a)
1998), with application limited to isostatic (simply-
supported) bridges. Alternatively, direct dynamic cal-
culations may be performed on full or reduced models
with or without vehicle-bridge interaction. Some of
these models are discussed in the following sections.

In the project of an important or singular bridge or
viaduct (with a proportionally high budget) the ap-
plication of the necessary dynamic calculation meth-
ods poses no important problems. However, it appears
that also some very simple railway bridges with com-
mon structural types may require sophisticated meth-
ods for analysis. This may be the case, for instance, of
portal frame structures typical of railway underpasses,
which are statically redundant, and in principle would
require a dynamic calculation involving several vi-
bration modes. It is also the case of some short-span
simply-supported bridges, in which the acceleration



of the deck may be surprisingly high.
In this paper, direct dynamic integration methods

are applied to such simple, short-span bridges in order
to gain improved knowledge regarding their dynamic
behaviour. In the case of simply supported beams, the
effect of taking into account vehicle-structure inter-
action on the resonant peak response is evaluated for
a representative series of European high-speed train
models. For the case of portal frame structures, the
possibility of analysing them with a simpler model
of an equivalent simply-supported beam is explored
and compared to a full multi-mode dynamic structural
analysis.

2 MODELS BASED ON DIRECT INTEGRATION
WITH MOVING LOADS

This class of methods is based on the direct time inte-
gration of the dynamic equations of the structure, sub-
ject to a given train of moving loads. The structural
model may be studied either by the complete (dis-
cretized) system withN d.o.f., or by a prior modal
analysis and reduction ton � N significant eigen-
modes. In turn, the modal analysis may be performed
on a discretized approximate system (e.g. by finite el-
ements) or alternatively, when analytical solutions are
available, directly on the continuous system.

2.1 Analytical mode extraction
The simplest case is that of a slender (no shear defor-
mation) simply-supported beam. The modes of vibra-
tion and associated eigenfrequencies are:
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wherel is the span,EI the bending stiffness, andm
the mass per unit length.

Analytical mode extraction is not possible in gen-
eral for statically redundant structures, except for
some special cases, such as some continuous beams
(Fryba 1972). A similar such case is that of a portal
frame consisting of a horizontal deck fully tied to two
vertical members. The eigenfrequencies are given by
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whereld is the span of the deck,EdId its bending stiff-
ness,md its mass per unit length, andb is obtained by
solving the following nonlinear equation:
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In this last equation subindexh refers to the vertical
members of the portal frame.

In figure 1 the first two eigenmodes are shown for
a real case of a portal frame in a high speed line
(Goicolea et al. 2001), which will be further discussed
in section 5.

b=3.2491

(a)1st. mode

b=4.3363

(b) 2nd. mode

Figure 1:First two eigenmodes of a portal frame for an
underpass of a high speed railway line. (parameterb corre-
sponds to equation (2))

Once the eigenmodesφi(x) are determined, the dy-
namic equation for each mode amplitudeyi under a
train of loadsFk moving at speedv (Fig. 2) is written
as

Miÿi + 2ζiωiMiẏi + ω2
i Miyi =

naxles∑
k=1

Fk 〈φi(vt− dk)〉,

(3)
whereMi is the modal mass,ζi the modal damping

ratio, and the notation〈φ(•)〉 has the following mean-
ing:

〈φ(x)〉 =

{
φ(x) if 0 < x < L

0 otherwise.
(4)

2.2 Finite element models
Finite element techniques perform a (semi-) discreti-
sation in spatial coordinates which is applicable to
any type of structure, including non linear type of
behaviour. As a result, a discreteN–d.o.f. system of
equations is obtained:

Md̈ + Cḋ + Kd = f(t), (5)

FkFk−1 F4F3 F2F1

v

d1
dk−1

L

Figure 2:Response for a load trainFk
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Figure 3:Definition of load in nodeA for moving loadF
in finite element model

whereM , C, K are the mass, damping and stiffness
matrices respectively,f(t) the load vector (from mov-
ing loads), andd the vector of nodal displacements.

In order to integrate these equations in time, gen-
erally a modal analysis and reduction leading to a
reduced number of significant eigenmodesn � N
is performed, arriving to uncoupled equations which
are integrated by standard time integration techniques
such as theβ-Newmark method.

The simplest procedure to represent the load train
is to apply load pulse time histories for each node,
depending on the time of arrival and the discretisation
(Fig. 3).

3 MODELS BASED ON HARMONIC SERIES
These models take advantage of the fact that for sim-
ply supported beams the modes of vibration are har-
monic functions (1). Furthermore, generally only the
first mode of vibration need be considered. Following
equation (3), the response to a series of moving loads
will be a sum of (damped) harmonic terms.

Based on different simplifications, it is possible
to establish analytical expressions which provide
bounds on the dynamic response of the beam. A com-
mon feature in these models is that these analytical
expressions make use of thedynamic signatureof the
train. This is a function of special relevance in the in-
tuitive interpretation of the response of a given train,
which defines its aggressiveness in relation to the dy-
namic effects on a bridge. Two such models have been
proposed in (ERRI D214 (a) 1998): the DER model
(based on the decomposition of the excitation in res-
onance) and the LIR model (based on the residual vi-
brations after each load leaves the bridge). A slight
modification of LIR called IDP has been proposed in
(Domínguez Barbero 2001).

As an example we cite the expression of the LIR
method for maximum acceleration at mid-span,Γ, ob-
tained as a product of the following factors:

Γ = Cacc ·A(r) ·G(λ), (6)

whereCacc = 1/M is a constant (equal to the inverse
of the total mass of the span),λ = v/f0 (wavelength),

Figure 4: Dynamic signature of ICE2 train using LIR
method

with v the train speed andf0 the eigenfrequency (Hz)
of the first mode, andr = λ/(2l), l being the span.
The remaining terms are defined by:
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In these expressionsζ is the damping ratio,xi are the
distances of each of theN axles with corresponding
load Fi to the first axle of the train, andδi = (xi −
x1)/λ.

The termG(λ) in equation (8) is the so-calleddy-
namic signature. It depends solely on the axle load
distribution of the train and the damping ratio to be
considered. Each train has a characteristic dynamic
signature, which is obtained independently of the me-
chanical characteristics of the bridge. As an exam-
ple, the dynamic signature of ICE2 high speed train
is shown in figure 4 for various damping values.

The termA(r) in equation (7) is the so-called dy-
namic influence line of the bridge, which defines the
bridge response as a function ofr (itself in turn lin-
early related to speedv), depending solely on the
characteristics of the bridge: span(l), first eigenfre-
quency(f0), and damping(ζ).

A similar expression to (6) is applicable to the dis-
placement response of the deck, just by changing the
constant toCdisp = Cacc/(2πf0)

2.
The use of these methods allows for a very sim-

ple analytical evaluation, for a given bridge, of the



critical resonance speeds for which the deck response
is a maximum, without being necessary to perform a
dynamic calculation with time integration. However,
the drawback is their limited applicability to isostatic
bridges, thus ruling out many practical cases.

4 MODELS WITH VEHICLE-BRIDGE INTER-
ACTION

For a more general case, these models may include
the stiffness and damping represent the primary and
secondary stiffness and damping elements, as well as
the mass and (rotatory) inertia of bogies and vehicle
box. The effect of these is not only to introduce addi-
tional d.o.f.’s, but also to couple the motion of points
under successive axles. In many cases the main effects
of vehicle interaction with railway bridges may be ad-
equately captured with simplified interaction models
as proposed in (ERRI D214 (e) 1999), which do not
consider rotation of the vehicle boxes.

A schematic representation of the model employed
in this work and of the variables employed is shown
in figure 5. The following equations are obtained for
each mode of vibration(i = 1 . . . n):

Mi ÿi +Ci ẏi +Ki yi =
k∑

j=1

〈φi(d
j
rel)〉

(
g mj + mj

a q̈j
)
.

(9)
Also, for each interaction element(j = 1 . . . k):
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In equations (9) and (10) the notation〈φ(•)〉 corre-
sponds to that defined previously in (4). Addition-
ally, the termdj

rel refers to the relative position of el-
ementj on the bridge; taking the origin of timet = 0
when the head of the train enters the bridge (x = 0),
dj

rel = vt− dj.
Finally, the equations may be integrated in time

with standard time integration techniques, such asβ-
Newmark. A full description of this model is con-
tained in (Domínguez Barbero 2001).

5 DYNAMIC RESPONSE OF PORTAL FRAMES
A portal frame is a statically redundant structure. In
principle, for its dynamic analysis the direct time in-
tegration methods described in sections 2 or 4 should
be employed, including several modes of vibration
for the structure. The simpler models of section 3 are
precluded since they only apply to simply-supported

beams. When portal frames are embedded in an em-
bankment they may also have earth on the sides or
even on top of the deck. The proper analysis of
earth-covered frames is fairly complex, however of-
ten the earth may be considered more simply as a non-
structural added mass, which contributes to reduce the
dynamic effects.

From an engineering point of view these require-
ments are rather inconvenient: portal frames are very
simple structures, employed routinely for railway un-
derpasses, with a correspondingly low budget for cal-
culations.

The object of the work reported here has been to
validate a simple model which would be suitable for
the dynamic evaluation of such portal frames, with-
out necessitating multi-mode direct time integration.
The driving idea may be motivated by inspection of
figure 1(a): the first mode shape of the deck is not too
dissimilar to that of a simply supported beam. Also,
figure 1(b) suggests that the second mode of the frame
will not contribute much to deck vibrations. Hence,
it could be possible to find anequivalent beamwith
fictitious mass, length and stiffness. This equivalent
beam should possess similar dynamic characteristics
as the frame deck, and hence exhibit adynamic enve-
lope of similar shape and equal or greater to that of
the real frame. (This dynamic envelope is defined as
the maximum dynamic effect for each train speedv,
e.g. for accelerations the functionamax(v).) For this
purpose the equivalent beam cannot be just (trivially)
assigned the mechanical properties of the deck, as it
is clear that the edge restraints transmit some vibra-
tion energy to the vertical elements of the frame (see
Fig. 1(a)), which must be taken into account.

A first observation is that for a simple beam with
partial rotation restraint at the supports the first eigen-
frequency may be expressed as

ω1 =

(
π

β1l

)2
√

EI

m
(rad/s).

This expression, compared to (1) forn = 1, defines
an equivalent length of a simply-supported beam,
leq = β1l. For a simply-supported beamβ1 = 1, and
β1 = 0.6642 for fully-restrained supports. For a frame
deck the partial restraint suggests an equivalent length
between those two extremes.

The dynamic parameters of the equivalent beam to
be obtained are the spanleq, the mass per unit length
meq and the bending stiffness(EI)eq. For the equiva-
lent lengths four different values have been evaluated:
leq = 0.85l, 0.90l, 0.95l, 1.0l. For each case, the mass
is assigned asmeq = mdeck/leq. Finally, the bending
stiffness is obtained such that the first eigenfrequency
of the portal frame is maintained:

(EI)eq =
ω2

framemeql
4
eq

π4
(11)
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Figure 5:Vehicle-bridge interaction model employed

For the object of this work four portal frame under-
passes of a high speed railway line to be constructed
shortly were selected (PROINTEC 2001), with deck
spans of8.5, 8.7, 9.8 and15 m. The calculations were
carried out for the seven European high speed trains
defined in (IAPF 2001): AVE, EUROSTAR 373/1,
ETR-Y, ICE-2, TALGO-AV, THALYS, VIRGIN, for
speeds between120 and420 km/h in steps of5 km/h.
This makes a total of1708 dynamic calculations for
frames, carried out with a modified version of FEAP
(Taylor 2000), and6832 calculations for simply sup-
ported beams (Goicolea et al. 2001).

The results obtained comprise displacements and
accelerations at various points of the deck. As a rep-
resentative example, figure 6 shows the comparison
of dynamic envelopes obtained for frame no. 1, com-
pared to equivalent beam calculations. It is seen that
the beam withleq = l yields an excellent simpli-
fied model, reproducing accurately the shape of the
dynamic envelope, always on the conservative side
above the response of the frame, but not overly con-
servative. Similar results were obtained for all the
other frame types.

The implication of these results is that, at least for
portal frames which can be covered by the types here
tested, a simplified calculation method of the type de-
scribed in section 3 may be applied for design pur-
poses.

6 EFFECT OF VEHICLE-BRIDGE INTERAC-
TION IN SIMPLY-SUPPORTED BRIDGES

In this section we summarise another application of
interest in which the objective was to evaluate the re-
duction in dynamic effects corresponding to vehicle-
bridge interaction, as compared to predictions of
models with moving (fixed value) loads. Physically,
this reduction is due to the energy of vibration trans-
mitted to the vehicles, which is absent from the mov-
ing load models.

The motivation for this study is again a practical
engineering design problem: the maximum deck ac-
celerations obtained in short span beams (10 – 30 m)
often exceed the maximum values permitted by the
codes (i.e.amax ≤ 3.5m/s2 for double track deck in
(prEN 1991-2 2002)). Hence it is convenient to per-
form a precise enough calculation, without excessive
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Figure 6:Comparison of acceleration and displacement
results envelope between full frame model no. 1 and
equivalent simply-supported beam models withleq =
0.95 l, 1.0 l

conservatism. However, for such simple bridge types
it is often out of the question (from the point of view
of project engineers) to perform a complex dynamic
analysis with vehicle-bridge interaction. It would be
desirable to be able to take into account the interac-
tion effect by a reduction coefficient or by a (ficti-
tious)added damping.

The work reported, which is described in more de-
tail in (Domínguez Barbero 2001), comprises simply-
supported bridges with spans ranging between 5 and
40 m, following the catalogue of bridges defined for



benchmark purposes in (ERRI D214 (a) 1998). Cal-
culations have been performed using one mode of vi-
bration, with the models described above (sect. 2.1,
without interaction, and sect. 4, with interaction). Cal-
culations were performed for HS trains ICE-2, EU-
ROSTAR, and TALGO-AV, for which the data for
vehicle dynamics were available to the authors, in
each case for several damping ratios ranging between
ζ = 0.5% and 4%. The dynamic results envelopes
were calculated for various ranges of speeds, starting
at 120 and with maxima up to 420 km/h, in steps of
2.5 km/h.

An excerpt of the results is displayed in table 1,
showing reductions in maximum dynamic effects of
up to45%. These reductions are more significant for
the shorter spans, being also slightly larger for accel-
erations than for displacements. It may also be seen
that for higher line speed, higher reductions are ob-
tained.

(a) for speeds between 120 and 270 km/h

(b) for speeds between 120 and 375 km/h

Table 1: Reduction of effects due to consideration of
vehicle-structure interaction in simply-supported bridges

7 CONCLUSIONS
In summary we single out the following remarks.

• Due to the possibility of resonance, bridges in
high speed railway lines must be designed tak-
ing into account the necessary dynamic analysis.
This requirement has been introduced recently
into the latest codes of engineering practise for
railway bridges. A number of analysis methods
exist with different degree of complexity, which
have been discussed in this paper.

• Not enough knowledge is available at present re-
garding the dynamic and resonant behaviour of a
number of structural types common in engineer-
ing practise. In some cases this may lead to the
necessity of performing sophisticated dynamic
analyses for the design of very simple structures.

• A simple design procedure is proposed for the
calculation of dynamic effects in portal frames,
based on the dynamic equivalence with a fic-
titious simply-supported beam. This procedure
has been validated for a range of portal frames in
a new HS railway line, and could be generalised
to a wider range of cases.

• The reduction of dynamic effects in short-span
simply supported bridges due to vehicle-bridge
interaction has been evaluated. This proves to be
a significant proportion (45%) of the values ob-
tained without taking interaction into account.
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