Geomview Manual

Geomview Version 1.6.1
for Unix
December 10, 1996

(updated January 5, 2000)

Mark Phillips et al.

Copyright (©) 1993, The Geometry Center
Copyright (©) 2000, Geometry Technologies, Inc.

Geomview, the interactive 3D viewing program.

Introduction to Geomview 2

Introduction to Geomview

Geomview is an interactive program for viewing and manipulating geometric objects,
originally written by staff members of the Geometry Center at the University of Minnesota,
starting in 1991. It can be used as a standalone viewer for static objects or as a display engine
for other programs which produce dynamically changing geometry. It runs on many kinds
of Unix computers, including Linux, SGI, Sun, and HP. This manual describes Geomview
version 1.6.1.

Geomview is free software, available under the terms of the GNU General Public License;
See (undefined) [Copying], page (undefined) for details.

Geomview and this manual are available for download from ‘http://www.geomview.org’
or ‘ftp://ftp.geomview.org’. Permission is granted to make copies of this manual.

If you have questions or comments about Geomview or this manual, consider joining in
the ‘geomview-users’ mailing list, which is a forum in which users of Geomview commu-
nicate to answer each others’ questions and to share news about what they are doing with
Geomview. The Geomview authors participate in this list and sometimes post answers to
questions there. To join the list, send a note to geomview-users-request@geomview.org.

If you find a bug in Geomview, please report it to the Geomview team by sending a note
to software@geomview.org.

Distribution 3

Distribution

Geomview is free software; this means that everyone is free to use it and free to redis-
tribute it on certain conditions. Geomview is not in the public domain; it is copyrighted
and there are restrictions on its distribution, but these restrictions are designed to permit
everything that a good cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of Geomview that they might get from
you. The precise conditions are found in the GNU General Public License that comes with
Geomview and also appears following this section.

One way to get a copy of Geomview is from someone else who has it. You need not
ask for our permission to do so, or tell any one else; just copy it. If you have access to the
Internet, you can get the latest distribution version of Geomview by anonymous FTP from
ftp.geomview.org, or through your web browser at www.geomview.org.

You may also receive Geomview when you buy a computer. Computer manufacturers
are free to distribute copies on the same terms that apply to everyone else. These terms
require them to give you the full sources, including whatever changes they may have made,
and to permit you to redistribute the Geomview received from them under the usual terms
of the General Public License. In other words, the program must be free for you when you
get it, not just free for the manufacturer.

GNU GENERAL PUBLIC LICENSE 4

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE 5

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions

GNU GENERAL PUBLIC LICENSE 6

4.

5.

for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,

GNU GENERAL PUBLIC LICENSE 7

by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a

GNU GENERAL PUBLIC LICENSE 8

10.

11.

12.

version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 9

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

GNU GENERAL PUBLIC LICENSE 10

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

History of Geomview’s Development 11

History of Geomview’s Development

Geomview was originally written at the Geometry Center at the University of Minnesota
in Minneapolis. The Geometry Center was a research and education center funded by the
National Science Foundation, with a mission to promote research and communication of
mathematics. Much of the work there involved the use of computers to help visualize
mathematical concepts.

The project that eventually led to Geomview began in the summer of 1988 with the
work of Pat Hanrahan on a viewing program called MinneView. Shortly thereafter Charlie
Gunn begin developing OOGL (Object Oriented Graphics Language) in conjunction with
MinneView. Many people contributed to OOGL and MinneView, including Stuart Levy,
Mark Meuer, Tamara Munzner, Steve Anderson, Mario Lopez, Todd Kaplan.

In 1991 the staff of the Geometry Center began work on a new improved version of
OOGL, and a new and improved viewing program, which they called Geomview. At that
time essentially the only game in town for interactive 3D graphics was Silicon Graphics
(SGI), so Geomview was developed initially on SGI workstations, using IRIS GL. The first
version was finished in January of 1992. It immediately became very popular among visitors
to the Geometry Center, and through the Center’s ftp archive (this was before the web)
people at other institutions began using it too.

In addition to SGI workstations the Geometry Center had quite a few NeXT stations,
so soon after Geomview was running on SGIs the staff developed a version for NeXTStep
as well. By this time there were several thousand people using it around the world.

A few years later the staff ported Geomview to X windows and OpenGL, and eventually,
with the demise of NeXT, the NeXT version fell by the wayside.

In its mission to foster communication among researchers and educators, the Geometry
Center developed a web site, www.geom.umn.edu, in late 1993. It was one of the first 300
web sites in existence. A part of the web site was of course devoted to Geomview, and
helped to spread the word about its existence.

The Geometry Center closed its "brick and morter" facilities in August of 1998 (NSF
cut its funding), but the web site continued to exist, and Geomview continued to be very
popular around the world. In December of 1999 some of the former Geometry Center staff
set up www.geomview.org as a permanent home on the web for Geomview.

Geomview’s original authors, as well as a number of other volunteers around the world,
are still actively involved in using and developing Geomview.

Authors

Tamara Munzner, Stuart Levy, and Mark Phillips are the original authors of Geomview.
Celeste Fowler, Charlie Gunn, and Nathaniel Thurston also made significant contributions.
Daniel Krech and Scott Wisdom did the NeXTStep and RenderMan port, and Daeron
Meyer and Tim Rowley did the port to X windows. Many other Geometry Center staff
members, as well as several people elsewhere, also contributed.

Mark Phillips wrote this manual, with substantial help from Stuart Levy and Tamara
Munzner. Countless Geomview users have also been of great help by reading it and pointing
out mistakes.

How to Pronounce 'Geomview’ 12

How to Pronounce 'Geomview’

The word ’Geomview’ is a combination of the first syllable of the word ’geometry’, and
the word ’view’. The authors pronounce it with the accent on the first syllable
GE-om-view
Some people put the accent on the second syllable, where it falls in the word ’geom-

etry’, but the original authors, who invented the name, prefer the accent-on-first-syllable
pronunciation.

Let Us Hear From You 13

Let Us Hear From You

The developers of Geomview would like to find out how you are using Geomview. We
use this information in deciding what features to focus on, and in finding ways to continue
to support its development. If you find Geomview useful, please send us a letter telling us
what you are doing with it. We may include a link to your work on the geomview.org web
site (but we’ll ask you about this before doing so).

Please send the letter via email to register@geomview.org.

If you are interested in contributing to the development of Geomview, there are several
things you can do:

1. volunteer programming work

If you are a programmer and make an improvement to Geomview, contact the Ge-
omview team by emailing software@geomview.org. In general, if you intend to work on
Geomview very much please contact us so that we can coordinate your work with other
development work.

2. volunteer documentation work

Geomview also needs updated documentation; if you use Geomview a lot and are
familiar with it, you can help by working on revised documentation. For information
on this, email software@geomview.org.

3. contract with Geometry Technologies

Geometry Technologies, Inc. is a consulting firm that provides contract technical sup-
port and custom programming services in the area of 3D graphics. This includes a wide
range of services related to 3D graphics, included but not limited to applications involv-
ing Geomview. To the extent that resources allow, Geometry Technologies supports
the developement of Geomview; in particular it hosts the www.geomview.org web site,
and its staff make ongoing improvements to Geomview itself. If you are in a position
to pay for technical support or custom programming work, contracting with Geometry
Technologies indirectly supports Geomview. You can also contract with with Geometry
Technologies to have particular features that you want added to Geomview. Geometry
Technologies web site at www.geomtech.com, or email info@geomtech.com.

4. make a donation

If you want to donate money directly to support Geomview, you can do so online with
a credit card at https://secure.geomtech.com/geomview. You can also send a check via
regular mail to

Geometry Technologies, Inc.
77 Mid Oaks Ln.

Roseville, MN 55113

USA

Please include the name under which you wish the donation to be credited, either
your own or the third-party if it is a gift on behalf of someone else, and an e-mail
address to which we can acknowledge receipt. Geometry Technologies will not release
this information to anyone else (although they may use it to contact you). We will
send a physical receipt by normal mail for any donations of US$100 or more, provided

Let Us Hear From You 14

you include a return address. Geometry Technologies is a private corporation, so for
individuals within the U.S., donations are not tax-deductible.

Thank you.

Chapter 1: Overview 15

1 Overview

Geomview’s main purpose is to display objects whose geometry is given, allowing inter-
active control over details such as point of view, speed of movement, appearance of surfaces
and lines, and so on. Geomview can handle any number of objects and allows both separate
and collective control over them.

The simplest way to use Geomview is as a standalone viewer to see and manipulate
objects. It can display objects described in a variety of file formats. It comes with a wide
variety of example objects, and you can create your own objects.

You can also use Geomview to handle the display of data coming from another program
that is running simultaneously. As the other program changes the data, the Geomview image
reflects the changes. Programs that generate objects and use Geomview to display them
are called external modules. External modules can control almost all aspects of Geomview.
The idea here is that many aspects of the display and interaction parts of geometry software
are independent of the geometric content and can be collected together in a single piece
of software that can be used in a wide variety of situations. The author of the external
module can then concentrate on implementing the desired algorithms and leave the display
aspects to Geomview. Geomview comes with a collection of sample external modules, and
this manual describes how to write your own.

Geomview is the product of an effort at the Geometry Center to provide interactive
geometry software that is particularly appropriate for mathematics research and education.
In particular, Geomview can display things in hyperbolic and spherical space as well as
Euclidean space.

Geomview allows multiple independently controllable objects and cameras. It provides
interactive control for motion, appearances (including lighting, shading, and materials),
picking on an object, edge or vertex level, snapshots in SGI image file or Renderman RIB
format, and adding or deleting objects is provided through direct mouse manipulation,
control panels, and keyboard shortcuts.

Geomview supports the following simple data types: polyhedra with shared vertices
(.off), quadrilaterals, rectangular meshes, vectors, and Bezier surface patches of arbitrary
degree including rational patches. Object hierarchies can be constructed with lists of objects
and instances of object(s) transformed by one or many 4x4 matrices. Arbitrary portions of
changing hierarchies may be transmitted by creating named references.

Geomview can display 3-D graphics output from Mathematica and Maple.

Chapter 2: Tutorial 16

2 Tutorial

This chapter leads you through some of the basics of using Geomview. Work through
this chapter in front of a computer where you can try out the examples given here to get a
feel for what you can do with Geomview.

To start Geomview, login to the computer and get a shell window. A shell window is a
window in which you can type unix commands; the prompt in the window usually ends with
a ’'%’. In the shell window (the mouse cursor must be in the window) type the following
((Ente) here means hit the "Enter" key):

geomview tetra dodec

This command starts up Geomview and loads two example objects, a tetrahedron and
a dodecahedron. After a few seconds three windows should appear as shown in Figure 1.

The panel on the left is Geomview’s main control panel; it’s called the Main panel. The
skinny panel in the middle is the Tools panel and is for selecting different kinds of motions.
The window on the right is the camera window and in it you see a large tetrahedron and a
dodecahedron which is partially obscured by the tetrahedron.

Geomview has lots of panels but by default it displays only these three. We’ll describe
some aspects of these and a couple of the others in this tutorial. You can read more about
these and other panels in the later chapters of this manual.

Put the mouse cursor in the camera window and press down and hold the left mouse
button. Now, while holding down the button, slowly move the mouse around. You should
see the picture rotate in the direction you move the mouse. If you lift up on the mouse
button while moving the mouse, the picture continues rotating. To stop it, hold the mouse
very still and click down and up on the left mouse button.

Geomview uses the glass sphere model for mouse-based motion. This means you are
supposed to think of the object as being inside an invisible sphere and the mouse cursor
is a gripper outside the sphere. When you hold down the left mouse button, the gripper
grabs the sphere; when you let go of the button, the gripper releases the sphere. Moving
the mouse while holding the button down causes the sphere (and hence the object) to move
in the same direction as the mouse.

In addition to the two solids you should also see two wireframe boxes in the camera
window. These are the "bounding boxes" of the two objects. By default Geomview puts a
bounding box around each object that it displays so that you have an idea of how large it
is.

Notice that as you move the mouse around the tetrahedron and dodecahedron move as a
unit. That is because by default what you are actually moving is the "World". To move an
individual object instead of the whole world, move the mouse cursor to the Targets browser
in the Main panel. Click (any button) on the word tetra. This makes the tetrahedron be
the "target object". Now move the cursor back to the camera window and you can rotate
just the tetrahedron.

The motion that you have been applying up to now has been rotation, because that
is the motion mode that is selected in the Tools panel. To translate instead, click on the
Translate button. Now when you move the mouse in the camera window while holding
down the left button, the tetrahedron (which should still be the target object from before)

Chapter 2: Tutorial 17

JENER)
S HEN A

[Halt ook

External Modules

dd Bounding Box
Igebraic Sufaces

Motion
D-Snapshot
nimator

Cellular Automata

40 Tetris
ADNiew
GBCdema

Space

Geomview 1.6.1
3

File Edit Inspect
9] hdodec.off

g1] tetra.off

Figure 1: Initial Geomview display

will translate in the direction you move the mouse. Notice that you can translate it beyond
the edge of the window as long as you keep holding the left mouse button down. If you lift
up on the mouse button while moving the mouse, the tetrahedron will keep going. It moves
rather rapidly so it is very easy to lose track of where it is.

Chapter 2: Tutorial 18

If you accidentally lose the tetrahedron by translating it too far out of the view of the
window, you can get it back by clicking on the Center button in the Tools panel. This
causes it to come back to its initial position.

Click on the Center button to bring the tetrahedron home, and then translate it off to
one side so that you can completely see the dodecahedron.

Your world now has two objects in it that are beside each other. You should see the
dodecahedron in the middle of the window and maybe part of the tetrahedron off to one
side. Go back to the Targets browser in the Main panel and click on "World" to select
the whole world again. Now click on the Look At button in the Tools panel. You should
see something like Figure 2 — the dodecahedron and the tetrahedron in the middle of the
window next to each other. The Look At button positions the camera in such a way that
the target object is centered in the window.

Figure 2: Looking at the world

Now put the cursor over the middle of the dodecahedron and double-click the right
mouse button. This means click it down-and-up two times in rapid succession. Notice that
the dodecahedron becomes the target object; you can see this in the Targets browser in the
Main panel. Double-clicking the right mouse button on an object is another way to make
it the target object.

Go to the Inspect menu at the top of the Main panel and select Appearance. This brings
up the Appearance panel. When it appears, if it partially obscures another Geomview
window you can move it off to one side by dragging its frame with the middle mouse button
down.

The Appearance panel lets you control various things about the way Geomview draws
objects. Note the buttons labeled [af] Faces and [ae] Edges. Click on the [ae] Edges one,
and notice that Geomview is now drawing the edges of the dodecahedron. Click on it again
and the edges go away. Click several times and watch the edges come and go. When you’ve
had enough of this, leave the edges on and click the [af] Faces button. This toggles the
faces on and off. Click the button again to turn them back on.

Chapter 2: Tutorial 19

= Appearance {al[]

[ax] Revert | [[ag] Override Hide

Color: Show: Shading

[Cf] |I” [af] Faces Oas] Constant

C Ed

[Ce] | | [ae] Edges Zas] 3mooth

[Cn] | - [an] Mormals Jas] CSmooth

[Ch] | _i [ab] BBoxes

™ [av] Vects

_I [at] Texture

[” [av] Facing Mormals
] _I [aC] Concave

al] Shade Lines

[aw] Line Width Mormalize
([AM] Mane

1 [&h] Mormal Length

[2M] Zequence

"3m] keep

L

"[10 [ad] Patch Dicing

Figure 3: The Appearance Panel

[
=1 &
L2 B |
SV
[R e |
I R
& :I'—QLC!
[R e |
5| AH[E |2
w0 m
& o =
8 = | =
&l 3|
= |
Hod & GIY
ilclzws € T
;i

Figure 4: Color Chooser Panel

Now click on the [Cf] Faces button under the word COLOR. A color chooser panel like
the one in Figure 4 should appear.

Note the three sliders, H, S, and V, controlling the color’s hue, saturation, and value
(lightness). Clicking the HSV button gives a different set of sliders, one each for red, green,
and blue. Numerical values for both RGB and HSV color systems can be seen or edited
at the bottom of the panel. The dodecahedron’s previous colors were specified in the file
‘dodec’ that you loaded when we started Geomview. The color that you specify with the
color panel overrides the old colors. You can adjust the intensity of the color with the
Intensity slider. When you find a color that you like, click the Done button.

Now put the cursor somewhere over the gray background and double-click the right
mouse button; this picks "World" as the target object. Click the Look At button to look
at the world again.

Notice that in the Appearance panel the settings of the buttons have changed from the
way you left them with the dodecahedron. That’s because the Appearance panel always
displays the settings for the target object, which is now the world, which still has its default
settings.

Click on the [ab] BBox button under the word Draw. The bounding boxes go away. Now
put the cursor back in the camera window. At the keyboard, type the keys a b. Notice
that the bounding boxes come back. a b is the keyboard shortcut for the bounding box

Chapter 2: Tutorial 20

toggle button; the string "[ab]" appears on the button to indicate this. Most of Geomview’s
buttons have keyboard shortcuts that you can use instead if you want. This is useful once
you are familiar with Geomview and don’t want to have to move around among lots of
panels.

Now select the tetrahedron, either by double-clicking the right mouse button on it, or
by selecting "tetra" in the Targets browser. Then click on the Delete button in the Main
panel. The tetrahedron should disappear. This is how you get rid of an object.

You can also load objects from within Geomview. Click on the File menu in the Main
panel and choose Open. The Files panel will appear.

=i Files ; a iD

Filter

I {Wgcg/ngrap/data‘geomd™

Directories Files

BN - | HingeCube o
; ; =

. HingeDiamond

dd HingeDodec

CurvaturelLab HingelLongcube

helitocat HingeTetra

hinge HingeTriangle

hyperholic kleinE.ap.off

jurmp ;| KleinB.off /

=4 P =4 JES

Path List

/Wogcg/ngrap/data‘geom

Zelection

I fwWgcg/ngrap/data‘geom’

Figure 5: The Files Panel

Below the middle of this panel is a browser with three lines in it; the second line is a
directory with lots of Geomview example files in it. Click on that second line. Your Files
panel should then look something like Figure 5. Scroll down in the list of files until you see
‘tref.off’. Click on that line, and then click on the Add button. A large trefoil-shaped

tube will appear in your window. Click the Done button in the Files panel to dismiss the
panel.

Now click on the Reset button in the Tools panel. This causes everything to return to
its home position. You should see something like Figure 6 at this point: a dodecahedron
and a trefoil knot.

Play around with the trefoil knot and the dodecahedron. Experiment with some of the
other buttons in the Tools panel. Try coloring the trefoil knot with the Appearance panel.

Chapter 2: Tutorial 21

Figure 6: Trefoil and Dodecahedron

For a tutorial on how to create your own objects to load into Geomview, see file
‘doc/oogltour’ distributed with Geomview. The things in that file will be incorporated
into a future version of this manual.

Chapter 3: Interaction 22

3 Interaction

This chapter describes how you interact with Geomview through the mouse and key-
board.

3.1 Starting Geomview

The usual way to start Geomview is to type geomview in a shell window ((Enter)
means hit the "Enter" key). It may take Geomview a few seconds to start up; one or more
windows will appear and you can begin interacting with Geomview immediately.

It is also possible to specify actions for Geomview to perform at startup time by giving
arguments in the shell command line. See (undefined) [Command Line Options], page (un-
defined).

3.2 Command Line Options

Here are the command line options that Geomview allows:

‘“br g b’ Set the window background color to the given r g b values.

‘-c file’ Interpret the gcl commands in file, which may be the special symbol ‘=’ for
standard input. For a description of gcl, See (undefined) [GCL], page (unde-
fined).

‘-c command’
Commands may also be supplied literally, as in
-c¢ "(ui-panel main off)"
Since command includes parentheses, which have special meaning to the shell,
command must be quoted. Multiple -c options are allowed.
‘~wins nwins’
Causes Geomview to initially display nwins camera windows.
‘-wpos width, height [@xmin, ymin]’
Specifies the initial location and size of the first camera window. The values
for width, height, xmin, and ymin are in screen (pixel) coordinates.

‘-M objectname’
Display (possibly dynamically changing) geometry sent from the programs

geomstuff or togeomview. This actually listens to the named pipe
‘/tmp/geomview/objectname’; you can achieve the same effect with the shell
commands:

mkdir /tmp/geomview

mknod /tmp/geomview/objectname p
(assuming the directory and named pipe don’t already exist), then executing
the gcl command: (geometry objectname < /tmp/geomview/objectname)

‘-Mc pipename’
Like ‘-M’ above, but expects gcl commands, rather than OOGL geometry data,
on the connection.

Chapter 3: Interaction 23

‘-nopanels’
Start up displaying no panels, only graphics windows. Panels may be invoked
later as usual with the Px keyboard shortcuts or with the ui-panel command.

‘-e module’
Start an external module; module is the name associated with the module,
appearing in the main panel’s Applications browser, as defined by the emodule-
define command.

‘-start module args ...’
Like -e but allows you to pass arguments to the external module. "-" signals
the end of the argument list; the "—" may be omitted if it would be the last
argument on the Geomview command line.

‘~run shell-command args ...’
Like -start but takes the pathname of executable of the external module instead
of the module’s name. The pathnames of all known module directories are
appended to the UNIX search path when invoking shell-command.

3.3 Basic Interaction: The Main Panel

Normally when you invoke Geomview, three windows appear: the Main panel, the Tools
panel, and one camera window. Geomview has many other windows but most things can
be done with these three and so by default the others do not appear. This section of the
manual introduces some basic concepts that are used throughout the rest of the manual
and describes the Main panel.

—
o = = =
-] -]_:
““ 3
=
3 T
— g mg w
> 122 25 &
5 © B s 53 3
85|~ |28z o585
38| 2 I 68858588
S = 'Es=8goE=2
o [1}] ooOoc2E B
G T | AR AR S
IR
3| & E
S o
@
S
| o
wr o
3| £ B =
& = o ®
=] = © =R
8] 5 = g%T 2
S| o £E5
S BEJ
o || - =Y
""ﬂ"‘ iy — S,

The Main Panel

Geomview can display an arbitrary number of objects simultaneously. The Targets
browser in the Main panel displays a list of all the objects that Geomview currently knows
about. This browser has a line for each object that you have loaded, plus some lines for
other objects. One of the other objects is called World and corresponds to the all the

Chapter 3: Interaction 24

currently loaded objects, treated as if they were one object. Most of the operations that
you can do to one object, such as applying a motion or changing a color, can also be done
to the "World" object.

The Targets browser also has an entry for each camera. By default there is only one
camera; it is possible to add more of them via the New Camera entry of the Main panel’s
File menu. Geomview treats cameras in much the same way as it does geometric objects.
For example, you can move cameras around and add them and delete them just as with
geometric objects. Cameras do not usually show up in the display as an object that you see.
Each camera has a separate camera window which displays the view as seen by that camera.
(It is possible for each camera to display a geometric representation of other cameras. See
(undefined) [Cameras|, page (undefined).)

Because Geomview treats cameras and geometric objects very similarly, the term object
in this documentation is used to refer to either one. When we need to distinguish between
the two kinds of objects, we use the term geom to denote a geometric object and the word
camera to denote a camera.

The object which is selected (highlighted) in the Targets browser is called the target
object. This is the object that receives any actions that you do with the mouse or key-
board. You can change the target object by selecting a different line in the Targets browser.
Another way to change the target object is to put the mouse cursor directly over a geom in
a camera window and rapidly double-click the right mouse button. This process is called
picking; the picked object becomes the new target.

Geomview objects are all known by two names, both of which are shown in the Targets
browser. The first name given there, which appears in square brackets (]]), is a short name
assigned by Geomview when you load the object. It consists of the letter ‘g’ for geoms and
‘c’ for cameras, followed by a number. The second name is a longer more descriptive name;
by default this is the name of the file that the object was loaded from. The two names are
equivalent as far as Geomview is concerned; at any point where you need to specify a name
you can give either one.

To manipulate an object, make sure you that the object you want to move is the target
object, and put the mouse cursor in a camera window. Motions are applied by holding down
either the left or middle mouse button and moving the mouse. There are several different
motion "modes", each for applying a different kind of motion. The MOTION MODE
browser in the Main panel indicates the current motion mode. The default is "Rotate".
You can change the current motion mode by selecting a new one in the MOTION MODE
browser, or by using the Tools panel. For more information about motion modes, See
(undefined) [Mouse Motions|, page (undefined).

The Modules browser lists Geomview external modules. An external module is a separate
program that interacts with Geomview to extend its functionality. For information on
external modules, See (undefined) [Modules], page (undefined).

The menu bar at the top of the main panel offers menus for common operations.

To create new windows, load new objects, save objects or other information, or quit from
geomview, see the File menu.

To copy or delete objects, see the Edit menu.

You can invoke any panel from the Inspect menu.

Chapter 3: Interaction 25

The Space menu lets you choose whether geomview operates in Euclidean, Hyperbolic, or
Spherical mode. Euclidean mode is selected by default. For details about using Hyperbolic
and Spherical spaces, See (undefined) [Non-Euclidean Geometry|, page (undefined).

Most actions that you can do through Geomview’s panels have equivalent keyboard
shortcuts so that you can do the same action by typing a sequence of keys on the keyboard.
This is useful for advanced users who are familiar with Geomview’s capabilities and want
to work quickly without having to have lots of panels cluttering up the screen. Keyboard
shortcuts are usually indicated in square brackets ([]) near the corresponding item in a
panel. For example, the keyboard shortcut for Rotate mode is ’r’; this is indicated by "[r]"
appearing before the word "Rotate" in the MOTION MODE browser. To use this keyboard
shortcut, just hit the r key while the mouse cursor is in any Geomview window. Do not hit
the key afterwards.

Some keyboard shortcuts consist of more than one key. In these cases just type the keys
one after the other, with no afterwards. Keyboard shortcuts are case sensitive.

Many keyboard shortcuts can be preceded by a numeric parameter. For example, typing
ae toggles the state of drawing edges, while 1ae always enables edge drawing.

The keyboard field in the upper left corner of the Main panel echos the current state of
keyboard shortcuts.

For a list of all keyboard shortcuts, press the ? key.

3.4 Loading Objects Into Geomview

There are several ways to load an object into Geomview.

the Files panel
If you click the Load button in Geomview’s Main panel, the Files panel will
appear.

This panel lets you select a file from a variety of directories. The top of the
panel is a standard Motif file browser. Below this is a list of directories on
geomview’s standard search path; click on one of these to browse files in that
directory.

To select a file, double-click on its name in the browser at upper right, or click
on its name and press the key, or type the file’s name into the text box
at the bottom of the browser and press (Enter).

If the selected file contains OOGL geometric data, it will be added to the
geomview Targets browser. If it contains GCL commands instead, the file will
be interpreted. See (undefined) [GCL], page (undefined).

When the Files panel first appears, the directory selected in the directory
browser is the current directory — the one from which you invoked Geomview.
The file browser shows all the files in this directory, including ones that are not
Geomview files. If you try to load a file that doesn’t contain either an OOGL
object or Geomview commands, Geomview will print out an error message.

The directory browser also lists a second and third directory in addition to
the current directory. The second one, which ends in ‘data/geom’, is the Ge-
omview example data directory. This contains a wide variety of sample objects.

Chapter 3: Interaction 26

The Files Panel

It also contains several subdirectories. In particular, the ‘hyperbolic’ and
‘spherical’ subdirectories have sample hyperbolic and spherical objects, re-
spectively. Directory entries in the browser look just like file entries; to view a
subdirectory, click on it.

The third directory shown in the directory browser, which ends in ‘geom’, con-
tains several subdirectories with other Geomview files in them. These are used
less frequently than the ones in the ‘data/geom’ directory.

You can change the list of directories shown the Files panel’s directory browser
by using the set-load-path command; see (undefined) [GCL], page (unde-
fined).

the < keyboard shortcut:

If you type < in any Geomview window, the Load panel will appear. This is a
small version of the Files panel; it contains a text field in which you can enter
the name of a file to load (or a GCL command surrounded by parentheses).
After typing the name of the file to load, type (Enter); Geomview will load the
file as if you had loaded it with the Add button in the Files panel. If, after
bringing up the small load panel with <, you decide you want to use the larger
Files panel after all, press the File Browser button.

geometry loading commands:
The load, geometry, new-geometry, and read gcl commands allow you to load
an object into Geomview; See (undefined) [GCL], page (undefined).

Chapter 3: Interaction 27

B

File Browser | oK | Hide |

-=.i Load

| I hdodec.off

The Load Panel

3.5 Using the Mouse to Manipulate Objects

Geomview lets you manipulate objects with the mouse. There are six different mouse
motion modes: Rotate, Translate, Cam Fly, Cam Zoom, Geom Scale, and Cam Orbit. The
tools panel has a button for each of these modes; to switch modes, click on the corresponding
button. You can also select these through the Motion Mode browser on the Main panel.

This section describes basic mouse interaction. For details, see (undefined) [Commands],
page (undefined).
Each of the motion modes uses a common paradigm for how the motion is applied. In

particular, each depends on the current target object and the current center object. These
are explained in the following paragraphs.

The current target object is shown in the Target field in the Tools panel. This is the
same as the selected object in the Targets browser in the Main panel, and you can change
it by either selecting a new object in the browser, by typing a new entry in the field, or by
picking an object in a camera window by double-clicking the right mouse button with the
cursor over the object.

The current center object is shown in the Center field in the Tools panel. Its default
value is the special word "target", which means that the center object is whatever the target
object is. You can change the center to any object by typing it in the Center field. The
origin of the center object is held fixed in Rotate and Orbit modes. Normally the center
object is one of the existing geoms listed in the Targets browser, and the actual center of
rotations is the origin of that object’s coordinate system. It is possible, however, to select
an arbitrary point of interest on an object as the center. For details, see (undefined) [Point
of Interest|, page (undefined).

Chapter 3: Interaction 28

={Tod = I[]

kain | Donel

Target

World
Center

| |

[w]centefW]reset

The Tools Panel

You apply a mouse motion by holding down either the left or middle mouse button with
the cursor in a camera window and moving the mouse. Most of the modes have inertia,
which means that if you let go of the button while moving the mouse, the motion will
continue. It may be helpful to imagine the mouse cursor as being a gripper; when you hold
a mouse button down, it grips the target object and you can move it. When you let go of
the mouse button, the gripper releases the object. Letting go of the mouse button while
moving the mouse is like throwing the object — the object continues moving independent of
the mouse. Inertia can be turned off; see the Main panel’s Motion menu, described below.

Generally, the left mouse button controls motion in the screen plane, while the middle
mouse controls motion along or around the forward direction.

Pressing the shift key while dragging with left or middle mouse buttons in most motion
modes gives slow-speed motions, useful for fine adjustment.

You can pick any point on an object (not just its origin) as the center of motion by
holding down the shift key while clicking the right mouse button; this chooses a point of
interest.

Rotate In Rotate mode, hold the left mouse button down to rotate the target object
about the center object. Rotation proceeds in the direction that you move
the mouse. Specifically, the axis of rotation passes through the origin of the
center object, is parallel to the camera view plane, and is perpendicular to the
direction of motion of the mouse. When the center is "target", this means that
the target object rotates about its own origin.

The middle mouse button in Rotate mode rotates the target object about an
axis perpendicular to the view plane.

Chapter 3: Interaction 29

Translate

Cam Fly

Cam Orbit

Cam Zoom

Geom Scale

In Translate mode, hold the left mouse button down to translate the target
object in the direction of mouse motion. The middle mouse button translates
the target along an axis perpendicular to the view plane.

In Euclidean space, the center object is essentially irrelevant for translations.
In hyperbolic and spherical spaces, where translations have a unique axis, this
axis is chosen to go through the origin of the center object.

Cam Fly is a crude flight simulator that lets you fly around the scene. It
works by moving the camera. Move the mouse while holding the left mouse
button down to point the camera in a different direction. To move forward or
backward, hold down the middle button and move the mouse vertically. Both
of these motions have inertia; typically the easiest way to fly around a scene
is to give the camera a slight forward push by letting go of the middle button
while moving the mouse upward, and then using the left button to steer.

Cam Fly affects the camera window that the mouse is in; it ignores the target
object and the center object.

Cam Orbit mode lets you rotate the current camera around the current center.
The left mouse button does this rotation. The middle mouse button in Cam
Orbit mode acts as in Cam Fly mode: it moves the camera forward or backward.

In general Cam Orbit does not move the target object, although if the current
camera is selected as the target and the center is also the target, it will pivot
that camera about itself just as in Cam Fly mode.

Cam Zoom mode lets you change the current camera’s field of view with the
mouse; hold the left mouse button down and move the mouse to change it. The
numeric value of the field of view is shown in the FOV field in the Camera
panel.

Geom Scale mode lets you enlarge or shrink a geom. It operates on the target
object if that object is a geom. If the target is a camera, Geom Scale operates
on the geom that was most recently the target object. Moving the mouse
while holding down the left mouse button scales the object either up or down,
depending on the direction of mouse motion. The center of the applied scaling
transformation is the center object.

Scaling is meaningful only in Euclidean space; attempts to scale are ignored in
other spaces.

Geom Scale mode does not have inertia.

The Stop, Look At, Center, and Reset buttons on the Tools panel perform actions related
to motions but do not change the current motion mode.

Stop

The Stop button causes all motions to stop. It affects all moving objects, not
just the target object. Its keyboard shortcut is H.

The keyboard command h, which does not correspond to a panel button, stops
the current motion for the target object only.

Chapter 3: Interaction 30

Look At The Look At button causes the current camera to be moved to a position such
that it is looking at the target object, and such that the target object more or
less fills the window.

The Look At command is unreliable in non-Euclidean spaces.

Center The Center button undoes the target object’s transformation, moving it back
to its home position, which is where it was when you originally loaded it into
Geomview.

Reset The Reset button stops all motion and causes all objects to move back to their

home positions.

The Tools panel also sports a Main button, to invoke the main panel in case it was
dismissed or buried, and a Done button to close the Tools panel.

The Main panel’s Motion Style menu has special controls affecting how mouse motions
are interpreted.

[ui] Inertia
Normally, moving objects have inertia: if the mouse is still moving when the
button is released, the selected object continues to move. When Inertia is off,
objects cease to move as soon as you release the mouse.

[uc] Constrain Motion
It’s sometimes handy to move an object in a direction aligned with a coordinate
axis: exactly horizontally or vertically. Selecting Constrain Motion changes
the interpretation of mouse motions to allow this; approximately-horizontal or
approximately-vertical mouse dragging becomes exactly horizontal or vertical
motion. Note that the motion is still along the X or Y axes of the camera in
which you move the mouse, not necessarily the object’s own coordinate system.

[uo] Own Coordinates
It’s sometimes handy to move objects with respect to the coordinate system
where they were defined, rather than with respect to some camera’s view. While
Own Coordinates is selected, all motions are interpreted that way: dragging the
mouse rightward in translate mode moves the object in its own +X direction,
and so on. May be especially useful in conjunction with the Constrain Motion
button.

3.5.1 Selecting a Point of Interest

It is sometimes useful to specify a particular point on some object in a geomview window
as the center point for mouse motions. You can do this by shift-clicking the right mouse
button (i.e. click it once while holding down the shift key on the keyboard) with the cursor
over the desired point. This point then becomes the point of interest. The point of interest
must be on an existing object.

Selecting a point of interest simplifies examining a small portion of a larger object. Shift-
right-click on an interesting point, and select Orbit mode. Use the middle mouse button
to approach, and the left mouse to orbit the point, examining the region from different
directions.

Chapter 3: Interaction 31

When you have selected a point of interest, the current center object changes to an
object named "CENTER", which is an invisible object located at the point of interest. In
addition, mouse motions for the window in which you made the selection are adjusted so
that the point of interest follows the mouse.

You can change the point of interest at any time by selecting a new one by shift-clicking
the right mouse button again. You can cancel the point of interest altogether by shift-
clicking the right mouse button with the cursor on the background (i.e. not on any object).
This changes the center object back to its default value, "target".

The object named "CENTER", which serves as the center object for the point of interest,
is a special kind of geom called an "alien". It does not appear in the Targets browser. By
default it has no geometry associated with it and hence is invisible. You can, however,
explicitly give it some geometry using a GCL command, causing it to appear. Use the
geometry command for this: (geometry CENTER geometry), where geometry is any valid
geometry. For example, (geometry CENTER { < xyz.vect }) causes the file ‘xyz.vect’,
which is one of the standard example files distributed with geomview, to be used at the
geometry for CENTER.

What happens internally when you select a point of interest is that the center is set
to the object called CENTER, and that object is positioned at the point of interest. In
addition, in order for mouse motions to track the point of interest, the current camera’s
focal length is set to be the distance from the camera to the point of interest. You can
accomplish this via GCL with the following commands:

(if (real-id CENTER) nil (new-alien CENTER {}))
(ui-center CENTER)

(transform-set CENTER universe universe translate x y z)
(merge camera cam-id { focus d })

where (x,y,z) are the (universe) coordinates of the point of interest, and d is the distance
from that point to the current camera, cam-id. The first command above creates the "alien"
CENTER if it does not yet exist.

3.6 Changing the Way Things Look

Geomview uses a hierarchy of appearances to control the way things look. An appearance
is a specification of information about how something should be drawn. This can include
many things such things as color, lighting, material properties, and more. Appearances
work in a hierarchal manner: if a certain appearance property, for example face color, is not
specified in a particular object’s appearance, that object is drawn using that property from
the parent appearance. If both the parent and the child appearance specify a property, the
child’s setting takes precedence unless the parent appearance is set to override.

Every geom in Geomview has an appearance associated with it. There is also an ap-
pearance associated with the "World" geom, which serves as the parent of each individual
geom’s appearance. Finally, there is a global "base" appearance, which is the parent of the
World appearance.

The base appearance specifies reasonable values for all appearance information, and by
default none of the other appearances specify anything, which means they inherit their

Chapter 3: Interaction 32

values from the base appearance. This means that by default all objects are drawn using
the base appearance.

If you change a certain appearance property for a geom, that property is used in drawing
that geom. The parent appearance is used for any properties that you do not explicitly set.

Geomview has three panels which let you modify appearances.

3.6.1 The Appearance Panel

The Appearance panel lets you change most common appearance properties of the target
object.

=.i Appearance ; a iD

[ax] Revert | [[a0] Qverride Hide

Color Show

Shading
_[C | [af] Faces Das] Constant
[l e el Zas] 3mooth
[Cn] | _I [an] Mormals 3as] CSmooth
[Ch] | _i [ab] BBoxes
[~ [a¥] Wects
[~ [av] Facing Mormals I [at] Texture
_1 [al] Shade Lines I [aC] Concave
1 [aw] Line Width Mormalize
([AM] Mane

1 h] 1 | Length
[ah] Normal Leng I[IZN] Zequence

i 3] Ki
10 [ad] Patch Dicng | 11 e8P

L

The Appearance Panel

If the target is an individual geom, then changes you make in the appearance panel
apply to that geom’s appearance. If the target is the World, then appearance panel changes
apply to the World appearance and to all individual geom appearances. (Users have found
that this is more desirable than having the changes only apply to the World appearance.)
If the target is a camera, then appearance panel changes apply to the geom that was most
recently the target.

The five buttons near the upper right corner under the word Draw control what parts
of the target geom are drawn.

Faces This button specifies whether faces are drawn.

Edges This button specifies whether edges are drawn.

BBox This button specifies whether the bounding box is drawn.

Vects This button specifies whether VECT objects are drawn. VECTSs are a type

of OOGL object that represent points and line segments in 3-space; they are
distinct from edges of other kinds of objects, and it is sometimes desirable to
have separate control over whether they are drawn.

Normals This button specifies whether surface normal vectors are drawn.

Chapter 3: Interaction 33

B

-0

=

0.090 0.647 0.761

A~

:I

T v =

RGE | 0.761 0,535 0.269

-=.i Faces
Cancel | HE |

[HSV

Color Chooser Panel

The four buttons under Color labeled Faces, Edges, Normals, and BBox let you specify
the color of the corresponding aspect of the target geom. Clicking on one of them brings
up a color chooser panel.

This panel offers two sets of sliders: H(ue) S(aturation) V(alue), or R(ed) G(reen) B(lue),
each in the range 0 through 1. The square shows the current color, which is given numerically
in both HSV and RGB systems in the corresponding text boxes.

In the HSV color system, hue H runs from red at 0, green at .333, blue at .667, and back
to red at 1.0. Saturation gives the fraction of white mixed into the color, from 0 for pure
gray to 1 for pure color. Value gives the brightness, from 0 for black to 1 for full brightness.

Pressing the RGb or HSV button at top center switches the sliders to the other color
system. You can adjust colors either via the sliders, or by typing in either the RGB or HSV
text boxes.

Click OK to accept the color that you have chosen, or Cancel to retain the previous
color setting.

The SHADING browser lets you specify the shading model that Geomview uses to paint
the target geom.

Constant Every face of the object is drawn with a constant color which does not depend
on the location of the face, the camera, or the light sources. If the object
does not contain per-face or per-vertex colors, the diffuse color of the object’s
appearance is used. If the object contains per-face colors, they are used. If the
object contains per-vertex colors, each face is painted using the color of its first
vertex.

Flat Each face of the object is drawn with a color that depends on the relative
location of the face, the camera, and the light sources. The color is constant
across the face but may change as the face, camera, or lights move.

Smooth Each face of the object is drawn with smoothly interpolated colors based on
the normal vectors at each vertex. If the object does not contain per-vertex
normals, this has the same effect as flat shading. If the object has reasonable
per-vertex normals, the effect is to smooth over the edges between the faces.

CSmooth Each face of the object is drawn with exactly the specified color(s), independent
of lighting, orientation, and material properties. If the object is defined with
per-vertex colors, the colors are interpolated smoothly across the face; otherwise
the effect is the same as in Constant shading style.

Chapter 3: Interaction 34

The Facing Normals button on the Appearance panel indicates whether or not Geomview
should arrange that normal vectors always face the viewer. If a normal vector points away
from the viewer the color of the corresponding face or vertex usually is darker than is
desired. Geomview can avoid this by using the opposite normal in shading calculations.
This is the default. Using Facing Normals can give strange flickering dark or light shading
effects, though, near the horizon of a fairly smooth facetted object. Press this button to
use the normals given with the object.

The three text fields in the lower left corner of the Appearance panel are:

Line Width
The width, in pixels, for lines drawn by Geomview.

Normal Length
This is actually a scale factor; when normal vectors are drawn, Geomview draws
them to have a length that is their natural length times this number.

Patch Dicing
Geomview draws Bezier patches by first converting them to meshes. This pa-
rameter specifies the resolution of the mesh: if Patch Dicing is n, then an n by
n mesh is used to draw each Bezier patch. if Patch Dicing is 1, the resolution
reverts to a built-in default value.

The Revert button on the Appearance panel undoes all settings in the target appearance.
This causes the target geom to inherit all its appearance properties from its parent.

The Appearance panel’s Override button determines whether appearance controls should
override settings in the objects themselves — for example, setting the face color will affect
all faces of objects with multi-colored facets. Otherwise, appearance controls only provide
settings which the objects themselves do not specify. By default, Override is enabled. This
button applies to all objects, and to all appearance-related panels.

3.6.2 The Materials Panel

The Materials panel controls material properties of surfaces. It works with the target
object in the same way that the Appearance panel does.

=.i Material | a iDi

Iaterial DoneII

Diffuse Reflectance

] E|

Ambient Reflectance

| [| 03

Zhininess

o |15

Zpecular Reflectance

| [| 0.3

Alpha

|] K

|| _I [aT] Transparent

The Materials Panel

Chapter 3: Interaction 35

Transparent

Alpha

This button determines whether transparency is enabled. Geomview itself does
not fully support transparency yet and on some machines it does not work at
all. (The missing piece is implementation of a depth-sorting algorithm in the
rendering engine; not difficult, but just not done yet.) Use RenderMan if you
want real transparency: when transparency is enabled, a RenderMan snapshot
will contain the alpha information.

This slider determines the opacity/transparency when transparency is enabled.
0 means totally transparent, 1 means totally opaque.

Diffuse Reflectance

Shininess

This slider controls the diffuse reflectance of a surface. This has to do with how
much the surface scatters light that it reflects.

This slider controls how shiny a surface is. This determines the size of specular
highlights on the surface. Lower values give the surface a duller appearance.

Ambient Reflectance

This slider controls how much of the ambient light a surface reflects.

Specular Reflectance

Done

This slider controls the specular reflectance of a surface. This has to do with
how directly the surface reflects light rays. Higher values give brighter specular
highlights.

This button dismisses the Materials panel.

3.6.3 The Lighting Panel

The Lighting panel controls the number, position, and color of the light sources used in

shading.

=]

Color | Add |De|ete|

_| Show Lights [Is] Done |

Intensity

= Lights
Lights

The Lighting Panel

The Lighting panel is different from the Appearance and Material panels in that it
always works with the base appearance. This is because it usually makes sense to use the
same set of lights for drawing all objects in your scene.

Chapter 3: Interaction 36

LIGHTS The LIGHTS browser shows the currently selected light. Changes made using
the other widgets on this panel apply to this light. There is always at least one
light, the ambient light.

Intensity This slider controls the intensity of the current light.

Color This button brings up a color chooser which lets you select the color of the
current light.

Add This button adds a light.

Delete This button deletes the current light.

Show Lights

This button lets you see and change the positions of the light sources in a camera
window. Each light is drawn as long cylinder which is supposed to remind you
of a light beam. When you click on the Show Lights button Geomview goes
into "light edit" mode, during which you can rotate current light by holding
down the left mouse button and moving the mouse. Lights placed in this way
are infinitely distant, so what you are changing is the angular position. Click
on the Show Lights button again to return to the previous motion mode and
to quit drawing the light beams.

Done This button dismisses the Lighting panel.

Geomview’s Appearance, Materials, and Lighting panels are constructed to allow you to
easily do most of the appearance related things that you might want to do. The appearance
hierarchy that Geomview supports internally, however, is very complex and there are certain
operations that you cannot do with the panels. The Geomview command language (gcl)
provides complete support for appearance operations. In particular, the merge-baseap
command can be used to change the base appearance (which, except for lighting, cannot
be changed by Geomview’s panels). The merge-ap command can be used to change an
individual geom’s appearance. Appearances can also be specified in OOGL files; for details,
see (undefined) [Appearances|, page (undefined).

3.7 Cameras

A camera in Geomview is the object that corresponds to a camera window. By default
there is only one camera, but it is possible to have as many as you want. You can control
certain aspects of the way the world is drawn in each camera window via the Cameras
panel.

If the target object is a camera, the Cameras panel affects that camera. If the target
object is not a camera, the Cameras panel affects the current camera. The current camera
is the camera of the window that the mouse cursor is in, or was in most recently if the
cursor is not in a camera window. Thus, if you use the keyboard shortcuts for the actions
in the Cameras panel while the cursor is in a camera window, the actions apply to that
camera, unless you have explicitly selected another camera.

To create new camera windows, use the v+ keyboard shortcut, or see the File menu on
the Main panel.

Chapter 3: Interaction 37

=.i Cameras ; a iD

Camera Donel

Eackground Color [CE] |

I [ws
 [u
[~ WD
o
o

Zingle-Euffering
Zoftware Shading
Turn &n Dithering
Draw Other Cameras

[wd

[a]] Draw Unit Zphere
Projection

o] Crthographic
1wp] Perspective

Mear clip [wn]| 0.1

Far clip [wf]| 100

FOV [40

Focal Length [+]| 3

Lines Closer [wc]| 3

Zpace Model

[mp] Projective
[mc] Confarmal

The Cameras Panel

Single-Buffering

Dither

Normally, geomview windows are double-buffered: geomview draws the next
picture into a hidden window, then switches buffers to make it visible all at
once. On many systems, the memory for the hidden buffer comes from stealing
half the bits in each screen pixel, reducing the color resolution. When single-
buffering is enabled, the window flickers as each scene is being drawn, but
you may get smoother images with reduced grainy dithering artifacts. Single-
buffering is possible if Geomview is compiled with GL or OpenGL, but not with
plain-X graphics.

Many displays offer less than the 24 bits per pixel (8 bits each of red, green, and
blue) conventionally needed to show smooth gradations of color. When trying
to show a color not accurately available on the display, Geomview normally
dithers, choosing pixel colors sometimes brighter, sometimes darker than the
desired value, so that the average color over an area is a better approximation
to the true color than a single pixel could be. Effectively this loses spatial
resolution to gain color resolution. This isn’t always desirable, though. Turning
Dither off gives less grainy, but less accurately colored, images.

Software Shading

This button controls whether Geomview does shading calculations in software.
The default is to let the hardware handle them, and in Euclidean space this
is almost certainly best because it is faster. In hyperbolic and spherical space,

Chapter 3: Interaction 38

however, the shading calculations that the hardware does are incorrect. Click
this button to turn on correct but slower software shading.

Background Color

This button brings up a color chooser which you can use to set the background
color of the camera’s window.

PROJECTION

Near clip

Far clip

FOV

This browser lets you pick between perspective and orthogonal projection for
this camera.

This determines the distance in world coordinates of the near clipping plane
from the eye point. It must be a positive number.

This determines the distance in world coordinates of the far clipping plane from
the eye point. It must be a positive number and in general should be larger
than the Near clip value.

This is the camera’s field of view, measured in its shorter direction. In per-
spective mode, it is an angle in degrees. In orthographic mode, it is the linear
size of the field of view. This number can be modified with the mouse in Cam
Zoom mode.

Focal Length

The focal length is intended to suggest the distance from the camera to an imag-
inary plane of interest. Its value is used when switching between orthographic
and perspective views (and during stereo viewing), so as to preserve apparent
size of objects lying at the focal distance from the camera. Focal length also
affects interpretation of mouse-based translational motions. Speed of forward
motion (in translate, fly and orbit modes) is proportional to focal length; and
objects lying at the focal distance from the camera translate laterally at the
same rate as the mouse cursor. Finally, in N-D projection mode, cameras are
displaced back by the focal distance from the 3-D projection of the world origin.

Lines Closer

This number has to do with the way lines are drawn. Normally Geomview’s
z-buffering algorithm can get confused when drawing lines that lie exactly on
surfaces (such as the edges of an object); due to machine round-off error, some-
times the lines appear to be in front of the surface and sometimes they appear
behind it. The Lines Closer value is a fudge factor — Geomview nudges all the
lines that it draws closer to the camera by this amount. The number should be
a small integer; try 5 or 10. 0 turns this feature off completely. Choosing too
large a value will make lines visible even though they should be hidden.

SPACE MODEL

This determines the model used to draw the world. It is most useful in hy-
perbolic and spherical spaces. You probably don’t need to touch this browser
if you stay in Euclidean space. For more information about these models, see
(undefined) [Non-Euclidean Geometry], page (undefined).

Virtual This is the default model and represents the natural view from
inside the space.

Chapter 3: Interaction 39

Projective 'The projective model of hyperbolic and spherical space. Geoms
move under isometries of the space, and cameras move by Euclidean
motions. By default in the projective model, the Euclidean unit
sphere is drawn. In hyperbolic space this is the sphere at infinity.
In Euclidean space the projective model is the same as the virtual
model except that the sphere is drawn by default.

Conformal
The conformal model of hyperbolic and spherical space. Geoms
move under isometries of the space, and cameras move by Euclidean
motions. In Fuclidean space, the conformal model amounts to in-
verting everything in the unit sphere.

Draw Sphere
This controls whether Geomview draws the unit sphere. By default the unit
sphere appears in the projective and conformal models. In hyperbolic space
this is the sphere at infinity. In spherical space it is the equatorial sphere.

Done This button dismisses the Cameras panel.

3.8 Saving your work

Geomview’s Save panel lets you store Geomview objects and other information in files
that you can read back into Geomview or other programs.

The Save Panel

Chapter 3: Interaction 40

To use the Save panel you select the desired format in the browser next to the word
Save, enter the name of the object you want to save in the text field next to the word for,
and enter the name of the file you wish to save to in the long text field next to the word in.
You can then either hit or click on the OK button. When the file has been written,
the Save panel disappears. If you want to dismiss the Save panel without writing a file,
click the Cancel button.

If you specify ‘=’ as the file name, Geomview will write the file to standard output, i.e.
in the shell window from which you invoked Geomview.

The possible formats are given below. The kind of object that can be written with each
format is given in parentheses.

Commands (any object)
This write a file of gcl commands containing all information about the object.
Loading this file later will restore the object as well as all other information
about it, such as appearance, transformations, etc.

Geometry alone (geom)
This writes an OOGL file containing just the geometry of the object.

Geometry [in world] (geom)
This writes an OOGL file containing just the geometry of the object, trans-
formed under Geomview’s current transformation for this object. Use this if
you have moved the object from its initial position and want to save the new
position relative to the world.

Geometry [in universe] (geom)
This writes an OOGL file containing just the geometry of the geom, transformed
under both the object’s transformaton and the world’s transformation.

RMan [->tiff] (camera)
Writes a RenderMan file which when rendered creates a tiff image.

RMan [->frame] (camera)
Writes a RenderMan file which when rendered causes an image to appear in a
window on the screen.

SGI snapshot (camera)
Write an SGI raster file. A bell rings when the snapshot is complete. Only
available on SGI systems.

PPM Screen snapshot (camera)

Take a snapshot of the given window and save it as a PPM image. If you specify
a string beginning with a vertical bar (|) as the file name, it’s interpreted as
a Bourne shell command to which the PPM data should be piped, as in ‘|
pomtotiff > snap.tiff’ or ‘| convert -geometry 50% ppm:- snap.gif’.
PPM screen snapshots are only available with GL and Open GL, not plain X
graphics. The window should be entirely on the screen. Geomview will ensure
that no other windows cover it while the snapshot is taken.

PPM software snapshot (camera)
Writes a snapshot of that window’s current view, as a PPM image, to the given
file. The file name may be a Bourne shell command preceded by a vertical

Chapter 3: Interaction 41

bar (), as with the PPM screen snapshot. The software snapshot, though,
is produced by using a built-in software renderer (related to the X-windows
renderer). It doesn’t matter whether the window is visible or not, and doesn’t
depend on GL or OpenGL. It also doesn’t support some features, such as texture
mapping.

Postscript snapshot (camera)

Writes a Postscript snapshot of the camera’s view. It’s made by breaking up
the scene into lines and polygons, sorting by depth, and generating Postscript
lines and polygons for each one. Advantages over pixel-based snapshot images:
resolution is very high, so edges look sharp even on high-resolution printers,
or comparable-resolution images are typically much more compact. Disadvan-
tages: depth-sorting gives good results on some scenes, but can be wildly wrong
as a hidden-surface removal algorithm for other scenes. Also, Postscript doesn’t
offer smoothly interpolated shading, only flat shading for each facet.

Camera (camera)
Writes an OOGL file of a camera.

Transform [to world] (any object)
Writes an OOGL transform file giving Geomview’s transform for the object.

Transform [to universe| (any object)
Writes an OOGL transform file giving a transform which is the composition of
Geomview’s transform for the object and the transform for the world.

Window (camera)
Writes an OOGL window file for a camera.

Panels Writes a gcl file containing commands which record the state of all the Ge-
omview panels. Loading this file later will restore the positions of all the panels.

3.9 The Commands Panel

The Commands panel lets you type in a gcl command. When you hit (Enter), Geomview
interprets the command and prints any resulting output or error messages on standard
output. You can edit the text and hit as many times as you like, in general, whenever
you hit with the cursor in the Commands panel, Geomview tries to interpret whatever
text you have typed in the text field as a command.

[Move this.] Normalization is a kind of scaling; Geomview can scale an object so that it
fits within a certain region. The main point of normalization is to allow you to easily view
all of an object without having to worry about how big it is. We are gradually replacing
Geomview’s normalization feature with more robust camera positioning features. In general,
the best way to make sure you are seeing all of an object is to use the Look At button on
the Tools panel. Normalization may be completely replaced by this and other features in a
future version of Geomview.

Normalization is a property that applies to each geom separately. The NORMALIZE
GEOMETRY browser affects the normalization property of target geom. If the target geom
is "World", it affects all geoms.

Chapter 3: Interaction 42

=10
Hide "

=
@l_‘

The Commands Panel

‘
-=.§ Commands

None Do no normalization.
Individual Normalize this geom to fit within a unit sphere.

Sequence This resembles "Individual", except when an object is changing. Then, "Indi-
vidual" tightly fits the bounding box around the object whenever it changes and
normalizes accordingly, while "Sequence" normalizes the union of all variants
of the object and normalizes accordingly.

Keep This leaves the current normalization transform unchanged when the object
changes. It may be useful to apply "Individual" or "Sequence" normalization
to the first version of a changing object to bring it in view, then switch to
llKeepll.

3.10 Keyboard Shortcuts

Most actions that you can do through Geomview’s panels have equivalent keyboard
shortcuts so that you can do the same action by typing a sequence of keys on the keyboard.
This is useful for advanced users who are familiar with Geomview’s capabilities and want
to work quickly without having to have lots of panels cluttering up the screen. Keyboard
shortcuts usually are indicated in square brackets ([]) near the corresponding item in a
panel. For example, the keyboard shortcut for Rotate mode is ’r’; this is indicated by "[r]"
appearing before the word "Rotate" in the MOTION MODE browser. To use this keyboard
shortcut just hit the r key while the mouse cursor is in any Geomview window. You don’t
need to press the (Enter) or (SPACE) keys.

Some keyboard shortcuts consist of more than one key. In these cases just type the keys
one after the other, with no afterwards. Keyboard shortcuts are case sensitive. You
can cancel a multi-key keyboard shortcut that you have started by typing any invalid key,
for example the space bar.

Chapter 3: Interaction 43

Keyboard commands apply while the cursor is in any camera window and most control
panels.

Many keyboard shortcuts allow numeric arguments which you type as a prefix to the
command key(s). For example, the shortcut for Near clip in the camera panel is v n. To
set the near clip plane to ‘0.5, type 0.5vn. Commands that don’t take a numeric prefix
toggle or reset the current value.

Most commands allow one of the following selection prefixes. If none is provided the
command applies to the target object.

g world geom

gt #’th geom

g* All geoms

c current camera
c# #’th camera
c* All cameras

For example, g4af means toggle the face drawing of object g4.

Simply typing a selection prefix, like g4, doesn’t yet select an object; that only happens
when a command, like ae, follows the prefix. To select an object as the target without
doing anything else to it, use the p command. So g3p selects object g3.

The text field in the upper left corner of the Main panel shows the state of the current
keyboard shortcut.

In addition to the keyboard shortcuts for the panel commands, there is also a shortcut
for picking a target object: type the short name of the object followed by p. For example,
to select object g3, type g 3 p. This only works with the short names — the ones that
appear in square brackets ([]) in the Targets browser of the Main panel.

Below is a summary of all keyboard shortcuts.

Draw
af Faces
ae Edges
an Normals
ab Bounding Boxes
aVv Vectors
Shading
Oas Constant
las Flat
2as Smooth
3as Smooth, non-lighted

aT allow transparency

Chapter 3: Interaction

Other

Color

Motions

Viewing

at

av
#aw
aC

#vc

Ccf
Ce
Cn
Cb
CB

14)]

e m b = =

ivp
vd

#vv
#vn

#vf

texture mapping

eVert normals: always face viewer
Line Width (pixels)
handle concave polygons

edges Closer than faces (try 5-100)

faces

edges

normals
bounding boxes

background

rotate
translate
zoom FOV

fly

orbit

scale

recenter target
recenter all
halt

halt all

select center of motion (e.g. g 3 @)

Look At object

Orthographic view
Perspective view

Draw other views’ cameras
field of View

near clip distance

far clip distance

44

Chapter 3: Interaction

Panels

Lights

Space

Model

Other

v+
VX
vb
#vl

Pm
Pa
P1
Po
Pt
Pc
PC
Pf
Ps

PA

1s
le

me

ms

mv

mp

mc

ON

iN
2N all

add new camera

cursor on/off

backfacing poly cull on/off
focal length

Software shading on/off

Main

Appearance

Lighting

Obscure

Tools

Cameras

Commands

Files

Save

read commands from tty

Credits ("about")

show lights
edit lights

Euclidean
Hyperbolic
Spherical

Virtual
Projective

Conformal

normalizaton: none
normalization: each

normalization: all

45

Chapter 3: Interaction

ui
uc

uo

Pf
dd

Ps
TV

46

motion: Inertia
motion: Constrain to axis

motion: object’s Own coordinates

load geometry/command file

delete target object

save state to file
NTSC mode toggle

pick as target object (e.g. g 3 p) With no prefix, selects the object
under the mouse cursor (like double-clicking the right mouse)

Chapter 4: OOGL File Formats 47

4 OOGL File Formats

The objects that you can load into Geomview are called OOGL objects. OOGL stands
for “Object Oriented Graphics Library”; it is the library upon which Geomview is built.

There are many different kinds of OOGL objects. This chapter gives syntactic descrip-
tions of file formats for OOGL objects.

Examples of most file types live in Geomview’s ‘data/geom’ directory.

4.1 Conventions

4.1.1 Syntax Common to All OOGL File Formats

Most OOGL object file formats are free-format ASCII — any amount of white space
(blanks, tabs, newlines) may appear between tokens (numbers, key words, etc.). Line
breaks are almost always insignificant, with a couple of exceptions as noted. Comments
begin with # and continue to the end of the line; they’re allowed anywhere a newline is.

Binary formats are also defined for several objects; See (undefined) [Binary format],
page (undefined), and the individual object descriptions.

Typical OOGL objects begin with a key word designating object type, possibly with
modifiers indicating presence of color information etc. In some formats the key word is op-
tional, for compatibility with file formats defined elsewhere. Object type is then determined
by guessing from the file suffix (if any) or from the data itself.

Key words are case sensitive. Some have optional prefix letters indicating presence of
color or other data; in this case the order of prefixes is significant, e.g. CNMESH is meaningful
but NCMESH is invalid.

4.1.2 File Names

When OOGL objects are read from disk files, the OOGL library uses the file suffix to
guess at the file type.

If the suffix is unrecognized, or if no suffix is available (e.g. for an object being read
from a pipe, or embedded in another OOGL object), all known types of objects are tried in
turn until one accepts the data as valid.

4.1.3 Vertices

Several objects share a common style of representing vertices with optional per-vertex
surface-normal and color. All vertices within an object have the same format, specified by
the header key word.

All data for a vertex is grouped together (as opposed to e.g. giving coordinates for all
vertices, then colors for all vertices, and so on).

The syntax is

‘xy 2z’ (3-D floating-point vertex coordinates) or

Chapter 4: OOGL File Formats 48

‘x y zw’ (4-D floating-point vertex coordinates)
optionally followed by

‘nx ny nz’ (normalized 3-D surface-normal if present)
optionally followed by

‘rgba (4-component floating-point color if present, each component in range 0..1. The
a (alpha) component represents opacity: 0 transparent, 1 opaque.)

optionally followed by
3 S t’

(or,

‘st u’

(two or three texture-coordinate values).
Values are separated by white space, and line breaks are immaterial.

Letters in the object’s header key word must appear in a specific order; that’s the reverse
of the order in which the data is given for each vertex. So a ‘CN40FF’ object’s vertices contain
first the 4-component space position, then the 3-component normal, finally the 4-component
color. You can’t change the data order by changing the header key word; an ‘NCOFF’ is just
not recognized.

4.1.4 Surface normal directions

Geomview uses normal vectors to determine how an object is shaded. The direction of
the normal is significant in this calculation.

When normals are supplied with an object, the direction of the normal is determined by
the data given.

When normals are not supplied with the object, Geomview computes normal vectors
automatically; in this case normals point toward the side from which the vertices appear in
counterclockwise order.

On parametric surfaces (Bezier patches), the normal at point P(u,v) is in the direction
dP/du cross dP/dv.

4.1.5 Transformation matrices

Some objects incorporate 4x4 real matrices for homogeneous object transformations.
These matrices act by multiplication on the right of vectors. Thus, if p is a 4-element row
vector representing homogeneous coordinates of a point in the OOGL object, and A is the
4x4 matrix, then the transformed point is p’ = p A. This matrix convention is common in
computer graphics; it’s the transpose of that often used in mathematics, where points are
column vectors multiplied on the right of matrices.

Thus for Euclidean transformations, the translation components appear in the fourth row
(last four elements) of A. A’s last column (4th, 8th, 12th and 16th elements) are typically
0, 0, 0, and 1 respectively.

Chapter 4: OOGL File Formats 49

4.1.6 Binary format

Many OOGL objects accept binary as well as ASCII file formats. These files begin with
the usual ASCII token (e.g. CQUAD) followed by the word BINARY. Binary data begins at
the byte following the first newline after BINARY. White space and a single comment may
intervene, e.g.

OFF BINARY # binary-format "OFF" data follows

Binary data comprise 32-bit integers and 32-bit IEEE-format floats, both in big-endian
format (i.e., with most significant byte first). This is the native format for ’int’s and 'float’s
on Sun-3’s, Sun-4’s, and Irises, among others.

Binary data formats resemble the corresponding ASCII formats, with ints and floats in
just the places you’d expect. There are some exceptions though, specifically in the QUAD,
OFF and COMMENT file formats. Details are given in the individual file format descriptions.
See (undefined) [QUAD], page (undefined), See (undefined) [OFF], page (undefined), and
See (undefined) [COMMENT], page (undefined).

Binary OOGL objects may be freely mixed in ASCII object streams:

LIST
{ = MESH BINARY
... binary data for mesh here ...

QUAD
0

[« ||

001 010 010

(SO S

Note that ASCII data resumes immediately following the last byte of binary data.

Naturally, it’s impossible to embed comments inside a binary-format OOGL object,
though comments may appear in the header before the beginning of binary data.

4.1.7 Embedded objects and external-object references

Some object types (LIST, INST) allow references to other OOGL objects, which may
appear literally in the data stream, be loaded from named disk files, or be communicated
from elsewhere via named objects. Gcl commands also accept geometry in these forms.

The general syntax is

<oogl-object>
[Il{ll]
["define" symbolname]
["appearance" appearance]
[["="] object-keyword ...
| "<" filename
| ":" symbolname]
L]
where "quoted" items are literal strings (which appear without the quotes), [bracketed]
items are optional, and | denotes alternatives. Curly braces, when present, must match;
the outermost set of curly braces is generally required when the object is in a larger context,
e.g. when it is part of a larger object or embedded in a Geomview command stream.

For example, each of the following three lines:

Chapter 4: OOGL File Formats 50

{ define fred QUAD1 00 001 010 1001}
{ appearance { +edge } LIST { < "filel" } { : fred } }

VECT120 20 000 112

is a valid OOGL object. The last example is only valid when it is delimited unambiguously
by residing in its own disk file.

The "<" construct causes a disk file to be read. Note that this isn’t a general textual
"include" mechanism; a complete OOGL object must appear in the referenced file.

Files read using "<" are sought first in the directory of the file which referred to them,
if any; failing that, the normal search path (set by Geomview’s load-path command) is
used. The default search looks first in the current directory, then in the Geomview data
directories.

The ":" construct allows references to symbols, created with define. A symbol’s initial
value is a null object. When a symbol is (re)defined, all references to it are automatically
changed; this is a crucial part of the support for interprocess communication. Some future
version of the documentation should explain this better. ..

Again, white space and line breaks are insignificant, and "#" comments may appear
anywhere.

4.1.8 Appearances

Geometric objects can have associated "appearance" information, specifying shading,
lighting, color, wireframe vs. shaded-surface display, and so on. Appearances are inher-
ited through object hierarchies, e.g. attaching an appearance to a LIST means that the
appearance is applied to all the LIST’s members.

Some appearance-related properties are relegated to "material" and "lighting" substruc-
tures. Take care to note which properties belong to which structure.

Here’s an example appearance structure including values for all attributes. Order of
attributes is unimportant. As usual, white space is irrelevant. Boolean attributes may be
preceded by "+" or "-" to turn them on or off; "+" is assumed if only the attribute name
appears. Other attributes expect values.

A "*v prefix on any attribute, e.g. "*+edge" or "*linewidth 2" or "material { *diffuse 1
1.25 }", selects "override" status for that attribute.

appearance {

+face # (Do) draw faces of polygons. On by default.
-edge # (Don’t) draw edges of polygons
+vect # (Do) draw VECTs. On by default.
-transparent # (Disable) transparency. enabling transparency
does NOT result in a correct Geomview picture,
but alpha values are used in RenderMan snapshots.|]
-normal # (Do) draw surface-normal vectors
normscale 1 # ... with length 1.0 in object coordinates

+*+

+evert do evert polygon normals where needed so as

Chapter 4: OOGL File Formats 51

to always face the camera

-texturing # (Disable) texture mapping

-backcull # (Don’t) discard clockwise-oriented faces

-concave # (Don’t) expect and handle concave polygons
-shadelines # (Don’t) shade lines as if they were lighted cylinders]]

These four are only effective where the graphics system
supports them, namely on GL and Open GL.

-keepcolor # Normally, when N-D positional coloring is enabled asf
with geomview’s (ND-color ...) command, all
objects’ colors are affected. But, objects with the
"+keepcolor" attribute are immune to N-D coloring.

shading smooth ‘e

or ‘‘shading constant’’ or
or ‘‘shading csmooth’’.
smooth = Gouraud shading, flat = faceted,

csmooth = smoothly interpolated but unlighted.

shading flat’’ or

H* O H R

linewidth 1 # lines, points, and edges are 1 pixel wide.
patchdice 10 10 # subdivide Bezier patches this finely in u and v
material { # Here’s a material definition;
it could also be read from a file as in
‘‘material < file.mat’’
ka 1.0 # ambient reflection coefficient.

ambient .3 .5 .3 # ambient color (red, green, blue components)
The ambient contribution to the shading is
the product of ka, the ambient color,
and the color of the ambient light.

kd 0.8 # diffuse-reflection coefficient.

diffuse .9 1 .4 # diffuse color.
(In ‘‘shading constant’’ mode, the surface
is colored with the diffuse color.)

ks 1.0
specular 1 1 1
shininess 25

specular reflection coefficient.
specular (highlight) color.

specular exponent; larger values give
sharper highlights.

H* H H H

backdiffuse .7 .5 0 # back-face color for two-sided surfaces
If defined, this field determines the diffuse
color for the back side of a surface.
It’s implemented by the software shader, and
by hardware shading on GL systems which support]

Chapter 4: OOGL File Formats 52

two-sided lighting, and under Open GL.

alpha 1.0 # opacity; O = transparent (invisible), 1 = opaque.|j
Ignored when transparency is disabled.

edgecolor 1 1 0 # line & edge color

normalcolor O O O # color for surface-normal vectors

}
lighting { # Lighting model
ambient .3 .3 .3 # ambient light
replacelights # ‘‘Use only the following lights to
illuminate the objects under this
appearance.’’
Without "replacelights", any lights listed
are added to those already in the scene.
Now a collection of sample lights:
light {
color 1 .7 .6 # light color
position 1 0 .5 0 # light position [distant light]
given in homogeneous coordinates.
With fourth component = O,
this means a light coming from
direction (1,0,.5).
}
light { # Another light.
color 1 11
position 0 O .5 1 # light at finite position ...
location camera # specified in camera coordinates.
(Since the camera looks toward -Z,
this example places the light
.5 unit behind the eye.)
Possible "location" keywords:
global light position is in world (well, universe) coordinatesfi
This is the default if no location specified.
camera position is in the camera’s coordinate system
local position is in the coordinate system where
the appearance was defined
}
} # end lighting model
texture {
clamp st # or ‘“s?? or ‘‘t’’ or ‘‘nomne’’

file lump.tiff # file supplying texture-map image

Chapter 4: OOGL File Formats 53

alphafile mask.pgm.Z # file supplying transparency-mask image
apply blend # or ‘‘modulate’’ or ‘‘decal’’

transform 1 0 0 0 # surface (s,t,0,1) * tfm -> texture coordsf]
0100
0010
5001
background 1 0 0 1 # relevant for ‘‘apply blend’’
}
} # end appearance

There are rules for inheritance of appearance attributes when several are imposed at
different levels in the hierarchy.

For example, Geomview installs a backstop appearance which provides default values for
most parameters; its control panels install other appearances which supply new values for
a few attributes; user-supplied geometry may also contain appearances.

The general rule is that the child’s appearance (the one closest to the geometric primi-
tives) wins. Further, appearance controls with "override" status (e.g. *+face or material {
*diffuse 1 1 0 }) win over those without it.

Geomview’s appearance controls use the "override" feature so as to be effective even if
user-supplied objects contain their own appearance settings. However, if a user-supplied
object contains an appearance field with override status set, that property will be immune
to Geomview’s controls.

4.1.9 Texture Mapping

Some platforms support texture-mapped objects. (On those which don’t, attempts to
use texture mapping are silently ignored.) A texture is specified as part of an appearance
structure, as in See (undefined) [Appearances|, page (undefined). Briefly, one provides a
texture image, which is considered to lie in a square in (s,t) parameter space in the range
0 <=s<=1, 0<=t <= 1. Then one provides a geometric primitive, with each vertex
tagged with (s,t) texture coordinates. If texturing is enabled, the appropriate portion of
the texture image is pasted onto each face of the textured object.

There is (currently) no provision for inheritance of part of a texture structure; if the
texture keyword is mentioned in an appearance, it supplants any other texture specifica-
tion.

The appearance attribute texturing controls whether textures are used; there’s no
performance penalty for having texture { ... } fields defined when texturing is off.
The available fields are:
clamp none -or- s -or- t -or- st
Determines the meaning of texture coordinates outside the range 0..1.
With clamp none, the default, coordinates are interpreted
modulo 1, so (s,t) = (1.25,0), (.25,0), and (-.75,0) all refer to
the same point in texture space. With s or t or
st, either or both of s- or t-coordinates less than O or
greater than 1 are clamped to 1 or 0, respectively.

Chapter 4: OOGL File Formats 54

file filename
alphafile filename
Specifies image file(s) containing the texture.
The file file’s image specifies color or lightness information;
the alphafile if present, specifies a transparency ("alpha") mask;
where the mask is zero, pixels are simply not drawn.
Several image file formats are available; the file type must be
indicated by the last few characters of the file name:
.ppm or .ppm.Z or .ppm.gz 24-bit 3-color image in PPM format
.pgm or .pgm.Z or .pgm.gz 8-bit grayscale image in PGM format
.sgi or .sgi.Z or .sgi.gz 8-bit, 24-bit, or 32-bit SGI image
.tiff 8-bit or 24-bit TIFF image
.gif GIF image
(Though 4-channel TIFF images are possible, and could
represent both color and transparency information in one image,
that’s not supported in geomview at present.)
For this feature to work, some programs must be available in
geomview’s search path:
zcat for .Z files
gzip for .gz files
tifftopnm for .tiff files
giftoppm for .gif files

If an alphafile image is supplied, it must be the same size
as the file image.

apply modulate -or- blend -or- decal
Indicates how the texture image is applied to the surface.
Here the "surface color" means the color that surface would have
in the absence of texture mapping.

With modulate, the default, the texture color (or lightness,
if textured by a gray-scale image) is multiplied by the surface color.

With blend, texture blends between the background color

and the surface color. The file parameter must specify a

gray-scale image. Where the texture image is 0, the surface color is
unaffected; where it’s 1, the surface is painted in the color given
by background; and color is interpolated for intermediate values.

With decal, the file parameter must specify a

3-color image. If an alphafile parameter is present,

its value interpolates between the surface color (where alpha=0)

and the texture color (where alpha=1). Lighting does not affect the
texture color in decal mode; effectively the texture is
constant-shaded.

Chapter 4: OOGL File Formats 55

background R G B A
Specifies a 4-component color, with R, G, B, and A floating-point
numbers normally in the range 0..1, used when apply blend
is selected.

transform transformation-matrix
Expects a list of 16 numbers, or one of the other ways of representing
a transformation (: handlename or < filename).
The 4x4 transformation matrix is applied to texture coordinates,
in the sense of a 4-component row vector (s,t,0,1) multiplied on
the left of the matrix, to produce new coordinates (s’,t’)
which actually index the texture.

4.2 Object File Formats

4.2.1 QUAD: collection of quadrilaterals

The conventional suffix for a QUAD file is ‘.quad’.
The file syntax is

[CI1[N][4]1QUAD -or- [C][N][4]POLY # Key word
vertex vertex vertex vertex # 4xN vertices for some N
vertex vertex vertex vertex

The leading key word is [C] [N] [4]1QUAD or [C] [N] [4]POLY, where the optional C and N
prefixes indicate that each vertex includes colors and normals respectively. That is, these
files begin with one of the words

QUAD CQUAD NQUAD CNQUAD POLY CPOLY NPOLY CNPOLY

(but not NCQUAD or NCPOLY). QUAD and POLY are synonymous; both forms are allowed
just for compatibility with ChapReyes.

Following the key word is an arbitrary number of groups of four vertices, each group
describing a quadrilateral. See the Vertex syntax above. The object ends at end-of-file, or
with a closebrace if incorporated into an object reference (see above).

A QUAD BINARY file format is accepted; See (undefined) [Binary format], page (unde-
fined). The first word of binary data must be a 32-bit integer giving the number of quads in
the object; following that is a series of 32-bit floats, arranged just as in the ASCII format.

4.2.2 MESH: rectangularly-connected mesh

The conventional suffix for a MESH file is ‘.mesh’.
The file syntax is
[ul [C] [N] [Z] [4] [u] [v] [n]MESH # Key word
[Ndim] # Space dimension, present only if nMESH
Nu Nv # Mesh grid dimensions
NuxNv vertices, in format specified
by initial key word

Chapter 4: OOGL File Formats 56

vertex (u=0,v=0) vertex(1,0) ... vertex(Nu-1,0)
vertex(0,1) ... vertex (Nu-1,1)

vertex (0, Nv-1) ... vertex(Nu-1,Nv-1)
The key word is [U] [C] [N] [Z] [4] [u] [v] [n]JMESH. The optional prefix characters mean:

CU’

Each vertex includes a 3-component texture space parameter. The first two
components are the usual S and T texture parameters for that vertex; the third
should be specified as zero.

Each vertex (see Vertices above) includes a 4-component color.
Each vertex includes a surface normal vector.

Of the 3 vertex position values, only the Z component is present; X and Y are
omitted, and assumed to equal the mesh (u,v) coordinate so X ranges from 0
.. (Nu-1), Y from 0 .. (Nv-1) where Nu and Nv are the mesh dimensions — see
below.

Vertices are 4D, each consists of 4 floating values. Z and 4 cannot both be
present.

The mesh is wrapped in the u-direction, so the (0,v)’th vertex is connected to
the (Nu-1,v)’th for all v.

The mesh is wrapped in the v-direction, so the (u,0)’th vertex is connected to
the (u,Nv-1)’th for all u. Thus a u-wrapped or v-wrapped mesh is topologically
a cylinder, while a uv-wrapped mesh is a torus.

Specifies a mesh whose vertices live in a higher dimensional space. The dimen-
sion follows the "MESH" keyword. Each vertex then has Ndim components.

Note that the order of prefix characters is significant; a colored, u-wrapped mesh is a
CuMESH not a uCMESH.

Following the mesh header are integers Nu and Nv, the dimensions of the mesh.

Then follow Nu*Nv vertices, each in the form given by the header. They appear in
v-major order, i.e. if we name each vertex by (u,v) then the vertices appear in the order

(0,1) (1,1) (2,1) (3,1) ... (Nu-1,1)
.(.O.,Nv—l) ... (Nu-1,Nv-1)

A MESH BINARY format is accepted; See (undefined) [Binary format], page (undefined).
The values of Nu and Nv are 32-bit integers; all other values are 32-bit floats.

4.2.3 Bezier Surfaces

The conventional file suffixes for Bezier surface files are ‘.bbp’ or ‘.bez’. A file with
either suffix may contain either type of patch.

Syntax:

Chapter 4: OOGL File Formats 57

[STIBBP -or- [C]BEZ<Nu><Nv><Nd>[_ST]

Nu, Nv are u- and v-direction

polynomial degrees in range 1..6

Nd = dimension: 3->3-D, 4->4-D (ratiomnal)
(The ’<’ and ’>’ do not appear in the input.)
Nu,Nv,Nd are each a single decimal digit.
BBP form implies Nu=Nv=Nd=3 so BBP = BEZ333.

H OH H H H R

+*

Any number of patches follow the header
(Nu+1)*(Nv+1) patch control points

each 3 or 4 floats according to header
vertex (u=0,v=0) vertex(1,0) ... vertex(Nu,0)
vertex(0,1) ... vertex(Nu,1)

+*

vertex (0, Nv) ... vertex(Nu,Nv)

ST texture coordinates if mentioned in header
S(u=0,v=0) T(0,0) S(0,Nv) T(0,Nv)
S(Nu,0) T(Nu,0) S(Nu,Nv) T(Nu,Nv)

+*

4-component float (0..1) R G B A colors

for each patch corner if mentioned in header
RGBA(0,0) RGBA(O,Nv)

RGBA(Nu,0) RGBA(Nu,Nv)

These formats represent collections of Bezier surface patches, of degrees up to 6, and

with 3-D or 4-D (rational) vertices.

The header keyword has the forms [STIBBP or [C]1BEZ<Nu><Nv><Nd>[_ST] (the '<’
and >’ are not part of the keyword.

The ST prefix on BBP, or _ST suffix on BEZuvn, indicates that each patch includes four
pairs of floating-point texture-space coordinates, one for each corner of the patch.

The C prefix on BEZuvn indicates a colored patch, including four sets of four-component
floating-point colors (red, green, blue, and alpha) in the range 0..1, one color for each corner.

Nu and Nv, each a single digit in the range 1..6, are the patch’s polynomial degree in
the u and v direction respectively.

Nd is the number of components in each patch vertex, and must be either 3 for 3-D or
4 for homogeneous coordinates, that is, rational patches.

BBP patches are bicubic patches with 3-D vertices, so BBP = BEZ333 and STBBP = BEZ333_
ST.

Any number of patches follow the header. Each patch comprises a series of patch vertices,
followed by optional (s,t) texture coordinates, followed by optional (r,g,b,a) colors.

Each patch has (Nu+1)*(Nv+1) vertices in v-major order, so that if we designate a vertex
by its control point indices (u,v) the order is

(0,00 (1,0) (2,0) ... (Nu,0)
(0,1) (1,1) (2,1) ... (Nu,1)

Chapter 4: OOGL File Formats 58

(0,Nv) ... (Nu,Nv)
with each vertex containing either 3 or 4 floating-point numbers as specified by the header.

If the header calls for ST coordinates, four pairs of floating-point numbers follow: the
texture-space coordinates for the (0,0), (Nu,0), (0,Nv), and (Nu,Nv) corners of the patch,
respectively.

If the header calls for colors, four four-component (red, green, blue, alpha) floating-point
colors follow, one for each patch corner.

The series of patches ends at end-of-file, or with a closebrace if incorporated in an object
reference.

4.2.4 OFF Files

The conventional suffix for OFF files is ‘. off’.

Syntax:

[ST] [c] [N] [4] [n]OFF # Header keyword
[Ndim] # Space dimension of vertices, present only if nOFF
NVertices NFaces NEdges # NEdges not used or checked

[0] y[0] 2z[0] # Vertices, possibly with normals,
colors, and/or texture coordinates, in that order,
if the prefixes N, C, ST

are present.

If 40FF, each vertex has 4 components,

including a final homogeneous component.

If nOFF, each vertex has Ndim components.

If 4n0FF, each vertex has Ndim+1 components.

H o H H H H H N

x[NVertices-11 y[NVertices-1] z[NVertices-1]

Faces
Nv = # vertices on this face
v[0] ... v[Nv-1]: vertex indices

in range 0..NVertices-1
Nv v[0] v[1] ... v[Nv-1] colorspec

colorspec continues past v[Nv-1]

to end-of-line; may be O to 4 numbers

nothing: default

integer: colormap index

3 or 4 integers: RGB[A] values 0..255
3 or 4 floats: RGB[A] values 0..1

OFF files (name for "object file format") represent collections of planar polygons with
possibly shared vertices, a convenient way to describe polyhedra. The polygons may be
concave but there’s no provision for polygons containing holes.

An OFF file may begin with the keyword OFF; it’s recommended but optional, as many
existing files lack this keyword.

Chapter 4: OOGL File Formats 59

Three ASCII integers follow: NVertices, NFaces, and NEdges. Thse are the number of
vertices, faces, and edges, respectively. Current software does not use nor check NEdges; it
needn’t be correct but must be present.

The vertex coordinates follow: dimension * Nvertices floating-point values. They’re
implicitly numbered 0 through NVertices-1. dimension is either 3 (default) or 4 (specified
by the key character 4 directly before OFF in the keyword).

Following these are the face descriptions, typically written with one line per face. Each
has the form

N Vertl Vert2 ... VertN [color]

Here N is the number of vertices on this face, and Vertl through VertN are indices into the
list of vertices (in the range 0..NVertices-1).

The optional color may take several forms. Line breaks are significant here: the color
description begins after VertN and ends with the end of the line (or the next # comment).
A color may be:

nothing the default color

one integer
index into "the" colormap; see below

three or four integers
RGB and possibly alpha values in the range 0..255

three or four floating-point numbers
RGB and possibly alpha values in the range 0..1

For the one-integer case, the colormap is currently read from the file ‘cmap.fmap’ in
Geomview’s ‘data’ directory. Some better mechanism for supplying a colormap is likely
someday.

The meaning of "default color" varies. If no face of the object has a color, all inherit
the environment’s default material color. If some but not all faces have colors, the default
is gray (R,G,B,A=.666).

A [ST][C][N] [n]OFF BINARY format is accepted; See (undefined) [Binary format],
page (undefined). It resembles the ASCII format in almost the way you'd expect, with

32-bit integers for all counters and vertex indices and 32-bit floats for vertex positions (and
texture coordinates or vertex colors or normals if COFF /NOFF/CNOFF/STCNOFF/etc. format).

Exception: each face’s vertex indices are followed by an integer indicating how many
color components accompany it. Face color components must be floats, not integer values.
Thus a colorless triangular face might be represented as

int int int int int
3 17 5 9 0
while the same face colored red might be

int int int int int float float float float
3 17 5 9 4 1.0 0.0 0.0 1.0

Chapter 4: OOGL File Formats 60

4.2.5 VECT Files

The conventional suffix for VECT files is ‘.vect’.
Syntax:

[4]VECT
NPolylines NVertices NColors

Nv[0] ... Nv[NPolylines-1] # number of vertices
in each polyline

Nc[0] ... Nc[NPolylines-1] # number of colors supplied
in each polyline

Vert[0] ... Vert[NVertices-1] # All the vertices
(3*NVertices floats)

Color[0] ... Color[NColors-1] # All the colors
(4%NColors floats, RGBA)

VECT objects represent lists of polylines (strings of connected line segments, possibly
closed). A degenerate polyline can be used to represent a point.

A VECT file begins with the key word VECT or 4VECT and three integers: NLines, NVer-
tices, and NColors. Here NLines is the number of polylines in the file, NVertices the total
number of vertices, and NColors the number of colors as explained below.

Next come NLines integers
Nv[0] Nv[1] Nv[2] ... Nv[NLines-1]
giving the number of vertices in each polyline. A negative number indicates a closed
polyline; 1 denotes a single-pixel point. The sum (of absolute values) of the Nv/[i] must
equal NVertices.

Next come NLines more integers Nc[i]: the number of colors in each polyline. Normally
one of three values:

0 No color is specified for this polyline. It’s drawn in the same color as the
previous polyline.

1 A single color is specified. The entire polyline is drawn in that color.

abs(Nv[i]) Each vertex has a color. Either each segment is drawn in the corresponding
color, or the colors are smoothly interpolated along the line segments, depending
on the implementation.

The sum of the Nc[i] must equal NColors.

Next come N Vertices groups of 3 or 4 floating-point numbers: the coordinates of all the
vertices. If the keyword is 4VECT then there are 4 values per vertex. The first abs(Nv/[0])
of them form the first polyline, the next abs(Nv/[1]) form the second and so on.

Finally NColors groups of 4 floating-point numbers give red, green, blue and alpha
(opacity) values. The first Nc[0] of them apply to the first polyline, and so on.

Chapter 4: OOGL File Formats 61

A VECT BINARY format is accepted; See (undefined) [Binary format], page (unde-
fined). The binary format exactly follows the ASCII format, with 32-bit ints where integers
appear, and 32-bit floats where real values appear.

4.2.6 SKEL Files

SKEL files represent collections of points and polylines, with shared vertices. The con-
ventional suffix for SKEL files is ‘. skel’.

Syntax:
[4] [n] SKEL
[NDim] # Vertex dimension, present only if nSKEL
NVertices NPolylines

x[0] y[0] =z[0] # Vertices
(if nSKEL, each vertex has NDim components)

x[NVertices-11 y[NVertices-1] z[NVertices-1]

Polylines
Nv = # vertices on this polyline (1 = point)
v[0] ... v[Nv-1]: vertex indices

Nv v[0] v[1] ... v[Nv-11 [colorspec]

colorspec continues past v[Nv-1]
to end-of-line; may be nothing, or 3 or 4 numbers.|]
nothing: default color

3 or 4 floats: RGB[A] values 0..1

The syntax resembles that of OFF files, with a table of vertices followed by a sequence of
polyline descriptions, each referring to vertices by index in the table. Each polyline has an
optional color.

For nSKEL objects, each vertex has NDim components. For 4nSKEL objects, each vertex
has NDim+1 components; the final component is the homogeneous divisor.

No BINARY format is implemented as yet for SKEL objects.

4.2.7 SPHERE Files

The conventional suffix for SPHERE files is ‘. sph’.

SPHERE
Radius
Xcenter Ycenter Zcenter

Sphere objects are drawn using rational Bezier patches, which are diced into meshes; their
smoothness, and the time taken to draw them, depends on the setting of the dicing level,
10x10 by default. From Geomview, the Appearance panel, the <N>ad keyboard command,
or a dice nu nv Appearance attribute sets this.

Chapter 4: OOGL File Formats 62

4.2.8 INST Files

The conventional suffix for a INST file is ‘.inst’.
There is no INST BINARY format.

An INST applies a 4x4 transformation to another OOGL object. It begins with INST
followed by these sections which may appear in any order:
geom oogl-object
specifies the OOGL object to be instantiated. See (undefined) [References|, page (unde-
fined), for the syntax of an oogl-object. The keyword unit is a synonym for geom.
transform ["{"] 4x4 transform ["}"]
specifies a single transformation matrix. Either the matrix may appear literally as 16
numbers, or there may be a reference to a "transform" object, i.e.
"<" file-containing-4x4-matrix
or
":" symbol-representing-transform-object>
Another way to specify the transformation is
transforms
oogl-object

The oogl-object must be a TLIST object (list of transformations) object, or a LIST whose
members are ultimately TLIST objects. In effect, the transforms keyword takes a collection
of 4x4 matrices and replicates the geom object, making one copy for each 4x4 matrix.

If no transformnor transforms keyword appears, no transformation is applied (actually
the identity is applied). You could use this for, e.g., wrapping an appearance around an
externally-supplied object, though a single-membered LIST would do this more efficiently.

See (undefined) [Transformation matrices|, page (undefined), for the matrix format.
Two more INST fields are accepted: location and origin.
location [global or camera or ndc or screen or locall

Normally an INST specifies a position relative to its parent object; the location field
allows putting an object elsewhere.

e location global attaches the object to the global (a.k.a. universe) coordinate system
— the same as that in which geomview’s World objects, alien geometry, and cameras
are placed.

e location camera places the object relative to the camera. (Thus if there are multiple
views, it may appear in a different spatial position in each view.) The center of the
camera’s view is along its negative 7 axis; positive X is rightward, positive Y upward.
Normally the units of camera space are the same as global coordinates. When a camera
is reset, the global origin is at (0,0,-3.0).

e location ndc places the object relative to the normalized unit cube into which the
camera’s projection (perspective or orthographic) maps the visible world. X, Y, and Z
are each in the range from -1 to +1, with Z = -1 the near and Z = +1 the far clipping
plane, and X and Y increasing rightward and upward respectively. Thus something like

Chapter 4: OOGL File Formats 63

INST transform 1 000 0100 0010 -.9-.9-.991
location ndc
geom < label.vect

pastes label.vect onto the lower left corner of each window, and in front of nearly
everything else, assuming label . vect’s contents lie in the positive quadrant of the X-Y
plane. It’s tempting to use -1 rather than -.999 as the Z component of the position, but
that may put the object just nearer than the near clipping plane and make it (partially)
invisible, due to floating-point error.

e location screen places the object in screen coordinates. The range of 7 is still -1
through +1 as for ndc coordinates; X and Y are measured in pixels, and range from
(0,0) at the lower left corner of the window, increasing rightward and upward.

location local is the default; the object is positioned relative to its parent.
origin [global or camera or ndc or screen or local] x y z

The origin field translates the contents of the INST to place the origin at the specified
point of the given coordinate system. Unlike location, it doesn’t change the orientation,
only the choice of origin. Both location and origin can be used together.

So for example

{ INST

location screen

origin ndc 0 0 -.99

geom { < xyz.vect }

transform { 100 0 0 0 0 100 00 0 0 -.009 O 00011}
}

places xyz.vect’s origin in the center of the window, just beyond the near clipping plane.
The unit-length X and Y edges are scaled to be just 100 screen units — pixels — long,
regardless of the size of the window.

4.2.8.1 INST Examples

Here are some examples of INST files
INST
unit < xyz.vect
transform {
1000
0
0
1

}

{ appearance { +edge material { edgecolor 1 1 0 } }
INST geom < mysurface.quad }

{INST transform {: T} geom {<dodec.off}}
{ INST
transforms
{ LIST
{ < some-matrices.prj }

Chapter 4: OOGL File Formats 64

{ < others.prj }
{ TLIST <still more of them> }

}

geom
{ # stuff replicated by all the above matrices

3
}

This one resembles the origin example in the section above, but makes the X and Y
edges be 1/4 the size of the window (1/4, not 1/2, since the range of ndc X and Y coordinates
is -1 to +1).

{ INST
location ndc

geom { < xyz.vect }
transform{ .5000 0 .500 00-.0090 00 -.991}

}
4.2.9 LIST Files

The conventional suffix for a LIST file is ‘.1list’.
A list of OOGL objects

Syntax:

LIST
oogl-object
oogl-object

Note that there’s no explicit separation between the oogl-objects, so they should be
enclosed in curly braces ({ }) for sanity. Likewise there’s no explicit marker for the end of
the list; unless appearing alone in a disk file, the whole construct should also be wrapped
in braces, as in:

{ LIST { QUAD ... } { < xyz.quad } }

A LIST with no elements, i.e. { LIST }, is valid, and is the easiest way to create an

empty object. For example, to remove a symbol’s definition you might write

{ define somesymbol { LIST } }

4.2.10 TLIST Files

The conventional suffix for a TLIST file is ‘.grp’ ("group") or or ‘.prj’ ("projective"
matrices).

Collection of 4x4 matrices, used in the transforms section of and INST object.

Syntax:
TLIST # key word

<4x4 matrix (16 floats)>

Chapter 4: OOGL File Formats 65

. # Any number of 4x4 matrices

TLISTs are used only within the transforms clause of an INST object. They cause the
INSTs geom object to be instantiated once under each of the transforms in the TLIST. The
effect is like that of a LIST of INSTs each with a single transform, and all referring to the
same object, but is more efficient.

Be aware that a TLIST is a kind of geometry object, distinct from a transform object.
Some contexts expect one type of object, some the other. For example in

INST transform { : myT } geom { ... }
myT must be a transform object, which might have been created with the gcl
(read transform { define myT 1 0 0 1 ... })
while in
INST transforms { : myTs } geom { ... }
or INST transforms { LIST {: myTs} {< more.prj} } geom { ... }
myTs must be a geometry object, defined e.g. with
(read geometry { define myTs { TLIST1 00 1 ... } })

A TLIST BINARY format is accepted. Binary data begins with a 32-bit integer giving the
number of transformations, followed by that number of 4x4 matrices in 32-bit floating-point
format. The order of matrix elements is the same as in the ASCII format.

4.2.11 GROUP Files

This format is obsolete, but is still accepted. It combined the functions of INST and
TLIST, taking a series of transformations and a single Geom (unit) object, and replicating
the object under each transformation.

GROUP ... < matrices > ... unit { oogl-object }
is still accepted and effectively translated into

INST
transforms { TLIST ... <matrices> ... }
unit { oogl-object }

4.2.12 DISCGRP Files

This format is for discrete groups, such as appear in the theory of manifolds or in
symmetry patterns. This format has its own man page. See discgrp(5).

4.2.13 COMMENT Objects

The COMMENT object is a mechanism for encoding arbitrary data within an OOGL
object. It can be used to keep track of data or pass data back and forth between external
modules.

Syntax:
COMMENT # key word

name type # individual name and type specifier

Chapter 4: OOGL File Formats 66

{...} # arbitrary data

The data, which must be enclosed by curly braces, can include anything except unbal-
anced curly braces. The type field can be used to identify data of interest to a particular
program through naming conventions.

COMMENT objects are intended to be associated with other objects through inclusion in a
LIST object. (See (undefined) [LIST], page (undefined).) The "#" OOGL comment syntax
does not suffice for data exchange since these comments are stripped when an OOGL object
is read in to Geomview. The COMMENT object is preserved when loaded into Geomview and
is written out intact.

Here is an example associating a WorldWide Web URL with a piece of geometry:

{ LIST

{ < Tetrahedron}

{COMMENT GCHomepage HREF { http://www.geomview.org/ }}
}

A binary COMMENT format is accepted. Its format is not consistent with the other OOGL
binary formats. See (undefined) [Binary format|, page (undefined). The name and type are
followed by

N Bytel Byte2 ... ByteN

instead of data enclosed in curly braces.

4.3 Non-geometric objects

The syntax of these objects is given in the form used in See (undefined) [References],
page (undefined), where "quoted" items should appear literally but without quotes, square
bracketed ([]) items are optional, and | separates alternative choices.

4.3.1 Transform Objects

Where a single 4x4 matrix is expected — as in the INST transform field, the camera’s
camtoworld transform and the Geomview xform* commands — use a transform object.

Note that a transform is distinct from a TLIST, which is a type of geometry. TLISTSs can
contain one or more 4x4 transformations; "transform" objects must have exactly one.

Why have both? In many places — e.g. camera positioning — it’s only meaningful to have
a single transform. Using a separate object type enforces this.

Syntax for a transform object is

<transform> ::=
L"{"1] (curly brace, generally needed to make
the end of the object unambiguous.)
["transform"] (optional keyword; unnecessary if the type

is determined by the context, which it
usually is.)

["define" <name>]
(defines a transform named <name>, setting
its value from the stuff which follows)

Chapter 4: OOGL File Formats 67

<sixteen floating-point numbers>
(interpreted as a 4x4 homogeneous transform
given row by row, intended to apply to a
row vector multiplied on its LEFT, so that e.g.
Euclidean translations appear in the bottom row)

"<" <filename> (meaning: read transform from that file)

":" <name> (meaning: use variable <name>,
defined elsewhere; if undefined the initial
value is the identity transform)

["}] (matching curly brace)

The whole should be enclosed in { braces }. Braces are not essential if exactly one of the

above items is present, so e.g. a 4x4 array of floats standing alone may but needn’t have
braces.

Some examples, in contexts where they might be used:

Example 1: A gcl command to define a transform
called "fred"

(read transform { transform define fred

1000
0
0
1

Example 2: A camera object using transform

"fred" for camera positioning

Given the definition above, this puts the camera at
(-3, 0, 1), looking toward -Z.

{ camera
halfyfield 1
aspect 1.33
camtoworld { : fred }
}

4.3.2 cameras

A camera object specifies the following properties of a camera:

position and orientation
specified by either a camera-to-world or world-to-camera transformation; this
transformation does not include the projection, so it’s typically just a combi-

nation of translation and rotation. Specified as a transform object, typically a
4x4 matrix.

Chapter 4: OOGL File Formats 68

"focus" distance
Intended to suggest a typical distance from the camera to the object of inter-
est; used for default camera positioning (the camera is placed at (X,Y,Z) =
(0,0,focus) when reset) and for adjusting field-of-view when switching between
perspective and orthographic views.

window aspect ratio
True aspect ratio in the sense <Xsize>/<Ysize>. This normally should agree
with the aspect ratio of the camera’s window. Geomview normally adjusts the
aspect ratio of its cameras to match their associated windows.

near and far clipping plane distances
Note that both must be strictly greater than zero. Very large <far>/<near>
distance ratios cause Z-buffering to behave badly; part of an object may be
visible even if somewhat more distant than another.

field of view
Specified in either of two forms.

‘fov’ is the field of view — in degrees if perspective, or linear distance if
orthographic — in the shorter direction.
‘halfyfield’

is half the projected Y-axis field, in world coordinates (not angle!),
at unit distance from the camera. For a perspective camera, halfy-
field is related to angular field:

halfyfield = tan(Y_axis_angular field / 2)

while for an orthographic one it’s simply:
halfyfield = Y _axis_linear field / 2

This odd-seeming definition is (a) easy to calculate with and (b) well-defined
in both orthographic and perspective views.

The syntax for a camera is:
<camera> ::=

["camera"] (optional keyword)
["{"] (opening brace, generally required)
["define" <name>]

"<" <filename>
|
n . n <na_.me>
|
(or any number of the following,
in any order...)

"perspective" {"0" | "1"} (default 1)
(otherwise orthographic)

"stereo" {"0" | "1"} (default 0)

Chapter 4: OOGL File Formats 69

(otherwise mono)

"worldtocam" <transform> (see transform syntax above)
"camtoworld" <transform>

(no point in specifying both

camtoworld and worldtocam; one is

constrained to be the inverse of the other)

"halfyfield" <half-linear-Y-field-at-unit-distance>
(default tan 40/2 degrees)

"fov" (angular field-of-view if perspective,
linear field-of-view otherwise.

Measured in whichever direction is smaller,
given the aspect ratio. When aspect ratio
changes -- e.g. when a window is reshaped --
"fov" is preserved.)

"frameaspect" <aspect-ratio> (X/Y) (default 1.333)
"near" <near-clipping-distance> (default 0.1)

"far" <far-clipping-distance> (default 10.0)

"focus" <focus-distance> (default 3.0)

["}*] (matching closebrace)

4.3.3 window

A window object specifies size, position, and other window-system related information
about a window in a device-independent way.

The syntax for a window object is:

window ::=

["window"] (optional keyword)
["{"] (curly brace, often required)

(any of the following, in any order)

"size" <xsize> <ysize>
(size of the window)

"position" <xmin> <xmax> <ymin> <ymax>
(position & size)

Chapter 4: OOGL File Formats 70

"noborder"
(specifies the window should
have no window border)

"pixelaspect" <aspect>
(specifies the true visual aspect ratio
of a pixel in this window in the sense
xsize/ysize, normally 1.0.
For stereo hardware which stretches the
display vertically by a factor of 2,
‘‘pixelaspect 0.5’’ might do.
The value is used when computing the
projection of a camera associated with
this window.)

["}] (matching closebrace)

Window objects are used in the Geomview window and ui-panel commands to set
default properties for future windows or to change those of an existing window.

Chapter 5: Customization: ‘.geomview’ files 71

5 Customization: ‘.geomview’ files

When Geomview is started, it loads and executes commands in a system-wide startup
file named . geomview’. This file is in the ‘data’ subdirectory of the Geomview distribution
directory and contains gcl commands to configure Geomview in a way common to all users
on the system.

Next, Geomview looks for the file ‘*/.geomview’ (‘~’ stands for your home directory).
You can use this to configure your own default Geomview behavior to suit your tastes.

After reading ‘~/.geomview’, Geomview looks for a file named ‘. geomview’ in the current
directory. If such a file exists Geomview reads it, unless it is the same as ‘~/.geomview’
(which would be the case if you are running Geomview from your home directory). You
can use the current directory’s ‘.geomview’ to create a Geomview customization specific to
a certain project.

You can use ‘.geomview’ files to control all kinds of things about Geomview. They

can contain any valid gcl statements. Especially useful is the ui-panel command which
controls the initial placement of Geomview’s panels. For an example see the system-wide
‘.geomview’ file mentioned above. For details of gcl, See (undefined) [GCL], page (unde-
fined).

It is a good idea to enclose all the commands you put in a ‘.geomview’ file in a progn
statement in order to cause Geomview to execute them all at once. Otherwise Geomview
might execute them sequentially over the first few refresh cycles after starting up.

Chapter 6: External Modules 72

6 External Modules

An external module is a program that interacts with Geomview. A module communicates
with Geomview through gcl and can control any apsect of Geomview that you can control
through Geomview’s user interface.

In many cases an external module is a specialized program that implements some math-
ematical algorithm that creates a geometric object that changes shape as the algorithm
progresses. The module informs Geomview of the new object shape at each step, so the
object appears to evolve with time in the Geomview window. In this way Geomview serves
as a display engine for the module.

An external module may be interactive. It can respond to mouse and keyboard events
that take place in a Geomview window, thus extending the capability of Geomview itself.

6.1 How External Modules Interface with Geomview

External modules appear in the Modules browser in Geomview’s Main panel. To run a
module, click the left mouse button on the module’s entry in the browser. While the module
is running, an additional line for that module will appear in red in the browser. This line
begins with a number in brackets, which indicates the instace number of the module. (For
some modules it makes sense to have more than one instance of the module running at the
same time.) You can kill an external module by clicking on its red instance entry.

By default when Geomview starts, it displays all the modules that have been installed
on your system.

For instructions on installing a module on your system so that it will appear in the
Modules browser every time Geomview is run by anyone on your system, See (undefined)
[Module Installation], page (undefined).

When Geomview invokes an external module, it creates pipes connected to the module’s
standard input and output. (Pipes are like files except they are used for communication
between programs rather than for storing things on a disk.) Geomview interprets anything
that the module writes to its standard output as a gcl command. Likewise, if the exernal
module requests any data from Geomview, Geomview writes that data to the module’s
standard input. Thus all a module has to do in order to communicate with Geomview is
write commands to standard output and (optionally) receive data on standard input. Note
that this means that the module cannot use standard input and output for communicating
with the user. If a module needs to communicate with the user it can do so either through
a control panel of its own or else by responding to certain events that it finds out about
from Geomview.

6.2 Example 1: Simple External Module

This section gives a very simple external module which displays an oscillating mesh. To
try out this example, make a copy of the file ‘examplel.c’ (it is distributed with Geomview
in the ‘doc’ subdirectory) in your directory and compile it with the command

cc -o examplel examplel.c -1m

Then put the line

Chapter 6: External Modules 73

(emodule-define "Example 1" "./examplel")

in a file called ‘. geomview’ in your current directory. Then invoke Geomview; it is important
that you compile the example program, create the ‘. geomview’ file, and invoke Geomview all
in the same directory. You should see "Example 1" in the Modules browser of Geomview’s
Main panel; click on this entry in the browser to start the module. A surface should appear
in your camera window and should begin oscillating. You can stop the module by clicking
on the red "[1] Example 1" line in the Modules browser.

/*
* examplel.c: oscillating mesh
sk
* This example module is distributed with the Geomview manual.
* If you are not reading this in the manual, see the "External
* Modules" chapter of the manual for more details.
sk
* This module creates an oscillating mesh.
*/

#include <math.h>
#include <stdio.h>

/* F is the function that we plot
*/
float F(x,y,t)
float x,y,t;
{
float r = sqrt(x*x+y*y);
return(sin(r + t)*sqrt(r));

}

main(argc, argv)
char **argv;
{
int xdim, ydim;
float xmin, xmax, ymin, ymax, dx, dy, t, dt;

xmin = ymin = -5; /* Set x and y */
xmax = ymax = 5; /* plot ranges */
xdim = ydim = 24; /* Set x and y resolution */
dt = 0.1; /* Time increment is 0.1 */

/* Geomview setup. We begin by sending the command
* (geometry example { : fool})
* to Geomview. This tells Geomview to create a geom called
* "example" which is an instance of the handle "foo".
*/
printf (" (geometry example { : foo })\n");
fflush(stdout) ;

Chapter 6: External Modules 74

/* Loop until killed.
*/
for (t=0; ; t+=dt) {
UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t);

}
}
/* UpdateMesh sends one mesh iteration to Geomview. This consists of
* a command of the form
* (read geometry { define foo
* MESH
%k
* b
* where ... is the actual data of the mesh. This command tells
* Geomview to make the value of the handle "foo" be the specified
* mesh.
*/

UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t)
float xmin, xmax, ymin, ymax, t;
int xdim, ydim;

{
int i,j;
float x,y, dx,dy;
dx = (xmax-xmin)/(xdim-1);
dy = (ymax-ymin)/(ydim-1);
printf (" (read geometry { define foo \n");
printf ("MESH\n") ;
printf("%1d %1d\n", xdim, ydim);
for (j=0, y = ymin; j<ydim; ++j, y += dy) {
for (i=0, x = xmin; i<xdim; ++i, x += dx) {
printf ("4 %f RE\t", x, y, F(x,y,t));
}
printf ("\n");
}
printf ("})\n");
fflush(stdout) ;
}

The module begins by defining a function F (x,y,t) that specifies a time-varying surface.
The purpose of the module is to animate this surface over time.

The main program begins by defining some variables that specify the parameters with
which the function is to be plotted.

The next bit of code in the main program prints the following line to standard output
(geometry example { : foo })

This tells Geomview to create a geom called example which is an instance of the handle
foo. Handles are a part of the OOGL file format which allow you to name a piece of

Chapter 6: External Modules 75

geometry whose value can be specified elsewhere (and in this case updated many times);
for more information on handles, See (undefined) [OOGL File Formats|, page (undefined)
In this case, example is the title by which the user will see the object in Geomview’s object
browser, and foo is the internal name of the handle that the object is a reference to.

We then do fflush(stdout) to ensure that Geomview receives this command immedi-
ately. In general, since pipes may be buffered, an external module should do this whenever
it wants to be sure Geomview has actually received everything it has printed out.

The last thing in the main program is an infinite loop that cycles through calls to the
procedure UpdateMesh with increasing values of t. UpdateMesh sends Geomview a command
of the form

(read geometry { define foo

MESH
24 24

b
where . .. is a long list of numbers. This command tells Geomview to make the value of the

handle foo be the specified mesh. As soon as Geomview receives this command, the geom
being displayed changes to reflect the new geometry.

The mesh is given in the format of an OOGL MESH. This begins with the keyword MESH.
Next come two numbers that give the x and y dimensions of the mesh; in this case they
are both 24. This line is followed by 24 lines, each containing 24 triples of numbers. Each
of these triples is a point on the surface. Then finally there is a line with "})" on it that
ends the "{" which began the define statement and the " (" that began the command. For
more details on the format of MESH data, see (undefined) [MESH], page (undefined).

This module could be written without the use of handles by having it write out commands

of the form

(geometry example {

MESH

24 24

b
This first time Geomview receives a command of this form it would create a geom called
example with the given MESH data. Subsequent (geometry example ...) commands would
cause Geomview to replace the geometry of the geom example with the new MESH data. If
done in this way there would be no need to send the initial (geometry example { : foo
}) command as above. The handle technique is useful, however, because it can be used in
more general situations where a handle represents only part of a complex geom, allowing
an external module to replace only that part without having to retransmit the entire geom.
For more information on handles, See (undefined) [GCL], page (undefined).

The module loops through calls to UpdateMesh which print out commands of the above
form one after the other as fast as possible. The loop continues indefinitely; the module
will terminate when the user kills it by clicking on its instance line in the Modules browser,
or else when Geomview exits.

Sometimes when you terminate this module by clicking on its instance entry the Modules
browser, Geomview will kill it while it is in the middle of sending a command to Geomview.

Chapter 6: External Modules 76

Geomview will then receive only a piece of a command and will print out a cryptic but
harmless error message about this. When a module has a user interface panel it can use a
"Quit" button to provide a more graceful way for the user to terminate the module. See
the next example.

You can run this module in a shell window without Geomview to see the commands it
prints out. You will have to kill it with ctrl-C to get it to stop.

6.3 Example 2: Simple External Module with FORMS
Control Panel

This section gives a new version of the above module — one that includes a user interface
panel for controlling the velocity of the oscillation. We use the FORMS library by Mark
Overmars for the control panel. The FORMS library is a public domain user interface
toolkit for IRISes; for more information See (undefined) [Forms|, page (undefined).

To try out this example, make a copy of the file ‘example2.c’ (distributed with Geomview
in the ‘doc’ subdirectory) in your directory and compile it with the command
cc -I/u/gcg/ngrap/include -o example2 example2.c \
-L/u/gcg/ngrap/lib/sgi -1forms -1fm_ s -1gl_s -1m
You should replace the string ‘/u/gcg/ngrap’ above with the pathname of the Geomview
distribution directory on your system. (The forms library is distributed with Geomview and
the -I and -L options above tell the compiler where to find it.)
Then put the line
(emodule-define "Example 2" "./example2")
in a file called ‘.geomview’ in the current directory and invoke Geomview from that direc-
tory. Click on the "Example 2" entry in the Modules browser to invoke the module. A

small control panel should appear. You can then control the velocity of the mesh oscillation
by moving the slider.

~
*

example2.c: oscillating mesh with FORMS control panel

This example module is distributed with the Geomview manual.
If you are not reading this in the manual, see the "External
Modules" chapter of the manual for an explanation.

This module creates an oscillating mesh and has a FORMS control
panel that lets you change the speed of the oscillation with a
slider.

* X ¥ X X X ¥ ¥ *

*
~

#include <math.h>
#include <stdio.h>
#include <sys/time.h> /* for struct timeval below */

#include "forms.h" /* for FORMS library */

Chapter 6: External Modules 7

FL_FORM *QurForm;
FL_OBJECT *VelocitySlider;
float dt;

/* F is the function that we plot
*/
float F(x,y,t)
float x,y,t;
{
float r = sqrt(x*x+y*y);
return(sin(r + t)*sqrt(r));

}

/* SetVelocity is the slider callback procedure; FORMS calls this
* when the user moves the slider bar.
*/

void SetVelocity(FL_OBJECT *obj, long val)

{
dt = fl_get_slider_value(VelocitySlider);

}

/* Quit is the "Quit" button callback procedure; FORMS calls this
* when the user clicks the "Quit" button.
*/

void Quit(FL_OBJECT *obj, long val)

{
exit(0);

}

/* create_form_OurForm() creates the FORMS panel by calling a bunch of
* procedures in the FORMS library. This code was generated
* automatically by the FORMS designer program; normally this code
* would be in a separate file which you would not edit by hand. For
* simplicity of this example, however, we include this code here.
*/
create_form_OurForm()
{
FL_OBJECT *obj;
FL_FORM *form;
OurForm = form = fl_bgn_form(FL_N0O_B0X,380.0,120.0);
obj = f1_add_box(FL_UP_B0X,0.0,0.0,380.0,120.0,"");
VelocitySlider = obj = fl_add_valslider(FL_HOR_SLIDER,20.0,30.0,
340.0,40.0,"Velocity");
f1l_set_object_lsize(obj,FL_LARGE_FONT) ;
f1_set_object_align(obj,FL_ALIGN_TOP) ;
f1_set_call_back(obj,SetVelocity,0);
obj = f1_add_button(FL_NORMAL_BUTTON,290.0,75.0,70.0,35.0,"Quit");
f1_set_object_lsize(obj,FL_LARGE_FONT);

Chapter 6: External Modules

f1_set_call_back(obj,Quit,0);
fl_end_form();
}

main(argc, argv)
char **argv;

{

int xdim, ydim;
float xmin, xmax, ymin, ymax, dx, dy, t;
int fdmask;
static struct timeval timeout = {0, 200000};
xmin = ymin = -5; /* Set x and y
Xxmax = ymax = 5; /% plot ranges
xdim = ydim = 24; /* Set x and y resolution
dt = 0.1; /* Time increment is 0.1
/* Forms panel setup.

*/
foreground () ;
create_form_QurForm() ;
f1_set_slider_bounds(VelocitySlider, 0.0, 1.0);
f1_set_slider_value(VelocitySlider, dt);
f1_show_form(QurForm, FL_PLACE_SIZE, TRUE, "Example 2");
/* Geomview setup.

*/
printf (" (geometry example { : foo })\n");
fflush(stdout);
/* Loop until killed.

*/
for (t=0; ; t+=dt) {

fdmask = (1 << fileno(stdin)) | (1 << ggetfd());

select(qgetfd()+1, &fdmask, NULL, NULL, &timeout);

f1_check_forms();

UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t);
}

}

/* UpdateMesh sends one mesh iteration to Geomview
*/
UpdateMesh(xmin, xmax, ymin, ymax, xdim, ydim, t)
float xmin, xmax, ymin, ymax, t;
int xdim, ydim;
{

int i,j;

*/
*/
*/
*/

78

Chapter 6: External Modules 79

float x,y, dx,dy;

dx
dy

(xmax—-xmin) / (xdim-1) ;
(ymax-ymin)/(ydim-1) ;

printf (" (read geometry { define foo \n");

printf ("MESH\n") ;

printf ("%1d %1d\n", xdim, ydim);

for (j=0, y = ymin; j<ydim; ++j, y += dy) {
for (i=0, x = xmin; i<xdim; ++i, x += dx) {

printf ("%f %f %E\t", x, y, F(x,y,t));

}
printf("\n");

}

printf("})\n");

fflush(stdout) ;

}

The code begins by including some header files needed for the event loop and the FORMS
library. It then declares global variables for holding a pointer to the slider FORMS object
and the velocity dt. These are global because they are needed in the slider callback proce-
dure SetVelocity, which forms calls every time the user moves the slider bar. SetVelocity
sets dt to be the new value of the slider.

Quit is the callback procedure for the Quit button; it provides a graceful way for the
user to terminate the program.

The procedure create_panel calls a bunch of FORMS library procedures to set up the
control panel with slider and button. For more information on using FORMS to create
interface panels see the FORMS documentation. In particular, FORMS comes with a
graphical panel designer that lets you design your panels interactively and generates code
like that in create_panel.

This example’s main program is similar to the previous example, but includes extra code
to deal with setting up and managing the FORMS panel.

To set up the panel we call the GL procedure foreground to cause the process to run
in the foreground. By default GL programs run in the background, and for various reasons
external modules that use FORMS (which is based on GL) need to run in the foreground.
We then call create_panel to create the panel and £1_set_slider_value to set the initial
value of the slider. The call to £1_show_form causes the panel to appear on the screen.

The first three lines of the main loop, starting with

fdmask = (1 << filemo(stdin)) | (1 << qgetfd());

check for and deal with events in the panel. The call to select imposes a delay on each
pass through the main loop. This call returns either after a delay of 1/5 second or when the
next GL event occurs, or when data appears on standard input, whichever comes first. The
timeout variable specifies the amount of time to wait on this call; the first member (0 in
this example) gives the number of seconds, and the second member (200000 in this example)
gives the number of microseconds. Finally, £1_check_forms () checks for and processes any
FORMS events that have happened; in this case this means calling SetVelocity if the user
has moved the slider or calling Quit if the user has clicked on the Quit button.

Chapter 6: External Modules 80

The purpose of the delay in the loop is to keep the program from using excessive amounts
of CPU time running around its main loop when there are no events to be processed. This is
not so crucial in this example, and in fact may actually slow down the animation somewhat,
but in general with external modules that have event loops it is important to do something
like this because otherwise the module will needlessly take CPU cycles away from other
running programs (such as Geomview!) even when it isn’t doing anything.

The last line of the main loop in this example, the call to UpdateMesh, is the same as in
the previous example.

6.4 The FORMS Library

Geomview itself is written using Mark Overmar’s public domain FORMS library.
FORMS is a handy and relatively simple user interface toolkit for IRISes. Many Geomview
external modules, including the examples in this manual, use FORMS to create and manage
control panels.

We distribute a version of the FORMS library with Geomview because it is necessary
in order to compile Geomview and many of our modules. If you use FORMS to write
Geomview modules (or anything else, for that matter) you may use this copy. The header
file ‘forms.h’ is in the ‘include’ subdirectory, and the library file ‘libforms.a’ is in the
‘1lib/sgi’ subdirectory. In particular, you can link the example modules in this manual
using this copy.

FORMS is available via ftp on the Internet from a variety of sites, including cs.ruu.nl
or glaurung.physics.mcgill.ca. It comes with source code and extensive documentation.

If you wish you may use any other interface toolkit instead of FORMS in an external
module. We chose FORMS because it is free and relatively simple.

6.5 Example 3: External Module with Bi-Directional
Communication

The previous two example modules simply send commands to Geomview and do not
receive anything from Geomview. This section describes a module that communicates in
both directions. There are two types of communication that can go from Geomview to an
external module. This example shows asynchronous communication — the module needs
to be able to respond at any moment to expressions that Geomview may emit which inform
the module of some change of state within Geomview.

(The other type of communication is synchronous, where a module sends a request to
Geomview for some piece of information and waits for a response to come back before doing
anything else. The main gcl command for requesting information of this type is write.
This module does not do any synchronous communication.)

In ansynchronous communication, Geomview sends expressions that are essentially
echoes of gcl commands. The external module sends Geomview a command expressing
interest in a certain command, and then every time Geomview executes that command,
the module receives a copy of it. This happens regardless of who sent the command to
Geomview; it can be the result of the user doing something with a Geomview panel, or it

Chapter 6: External Modules 81

may have come from another module or from a file that Geomview reads. This is how a
module can find out about and act on things that happen in Geomview.

This example uses the OOGL lisp library to parse and act on the expressions that
Geomview writes to the module’s standard input. This library is actually part of Geomview
itself — we wrote the library in the process of implementing gcl. It is also convenient to
use it in external modules that must understand a of subset of gcl — specifically, those
commands that the module has expressed interest in.

This example shows how a module can receive user pick events, i.e. when the user
clicks the right mouse button with the cursor over a geom in a Geomview camera window.
When this happens Geomview generates an internal call to a procedure called pick; the
arguments to the procedure give information about the pick, such as what object was picked,
the coordinates of the picked point, etc. If an external module has expressed interest in
calls to pick, then whenever pick is called Geomview will echo the call to the module’s
standard input. The module can then do whatever it wants with the pick information.

This module is the same as the Nose module that comes with Geomview. Its purpose is
to illustrate picking. Whenever you pick on a geom by clicking the right mouse button on
it, the module draws a little box at the spot where you clicked. Usually the box is yellow. If
you pick a vertex, the box is colored magenta. If you pick a point on an edge of an object,
the module will also highlight the edge by drawing cyan boxes at its endpoints and drawing
a yellow line along the edge.

Note that in order for this module to actually do anything you must have a geom loaded
into Geomview and you must click the right mouse button with the cursor over a part of
the geom.

~
*

example3.c: external module with bi-directional communication

This example module is distributed with the Geomview manual.
If you are not reading this in the manual, see the "External
Modules" chapter of the manual for an explanation.

This module is the same as the "Nose" program that is distributed
with Geomview. It illustrates how a module can find out about

and respond to user pick events in Geomview. It draws a little box
at the point where a pick occurrs. The box is yellow if it is not
at a vertex, and magenta if it is on a vertex. If it is on an edge,
the program also marks the edge.

To compile:

cc -I/u/gcg/ngrap/include -g -o example3 example3.c \
-L/u/gcg/ngrap/1ib/sgi -loogl -1m

You should replace "/u/gcg/ngrap" above with the pathname of the
Geomview distribution directory on your system.

¥ K K K K K X X X K K K K X X X ¥ ¥ ¥ *

*/

Chapter 6: External Modules

#include
#include
#include
#include

/* boxst

<stdio.h>

"lisp.h" /* We use the O0GL lisp library */
"pickfunc.h" /* for PICKFUNC below */

"3d.h" /* for 3d geometry library */
ring gives the OOGL data to define the little box that

* we draw at the pick point. NOTE: It is very important to
* have a newline at the end of the OFF object in this string.
*/

char boxstring[] = "\

INST\n\

transform\n\

.04 0 0 0\n\

0 .04 0 O\n\

0 0 .04 O\n\

0 0 0 1\n\

geom\n\

OFF\n\

8 6 12\n\

\n\

-.6 -.6 -.5 # 0 \n\

.5 -.56 -.5 #1 \n\
5 .5 -.5 #2 \n\

-5 .5-.5 #3 \n\

-.6-.6 .5 #4 \n\
5-.56 .5 #5 \n\

.5 .5 .5 # 6 \n\

-.6 .65 .5 #7 \n\

\n\

401 2 3\n\

4 456 7\n\

4 2 37 6\n\

4 015 4\n\

4 0 47 3\n\

4126 5\n";

progn()

{
printf (" (progn\n");

}

endprogn ()

{
printf(")\n");
fflush(stdout);

}

Initialize()

82

Chapter

}

~
*

* X X K K X X X ¥ ¥ *

6: External Modules 83

extern LObject *Lpick(); /* This is defined by PICKFUNC below but must */Jj
/* be used in the following LDefun() call */

LInit();

LDefun("pick", Lpick, NULL);

progn(); {
/* Define handle "littlebox" for use later
*/

printf (" (read geometry { define littlebox { %s }})\n", boxstring) ;

/* Express interest in pick events; see Geomview manual for explanation.]]
*/

printf (" (interest (pick world * * * * nil nil nil nil nil))\n");

/* Define "pick" object, initially the empty list (= null object).
* We replace this later upon receiving a pick event.
*/

printf (" (geometry \"pick\" { LIST })\n");

/* Make the "pick" object be non-pickable.
*/
printf (" (pickable \'"pick\" no)\n");

/* Turn off normalization, so that our pick object will appear in thel]
* right place.
*/

printf (" (normalization \"pick\" none)\n");

/* Don’t draw the pick object’s bounding box.
*/
printf (" (bbox-draw \"pick\" off)\n");

} endprogn();

The following is a macro call that defines a procedure called
Lpick(). The reason for doing this in a macro is that that macro
encapsulates a lot of necessary stuff that would be the same for
this procedure in any program. If you write a Geomview module that
wants to know about user pick events you can just copy this macro
call and change the body to suit your needs; the body is the last
argument to the macro and is delimited by curly braces.

The first argument to the macro is the name of the procedure to
be defined, "Lpick".

The next two arguments are numbers which specify the sizes that

Chapter 6: External Modules

was something actually picked?
was the pick near a vertex?
was the pick near an edge?

84

ee

* certain arrays inside the body of the procedure should have.
* These arrays are used for storing the face and path information
* of the picked object. In this module we don’t care about this
* information so we declare them to have length 1, the minimum
* allowed.
%
* The last argument is a block of code to be executed when the module
* receives a pick event. In this body you can refer to certain local
* variables that hold information about the pick. For details s
* Example 3 in the Extenal Modules chapter of the Geomview manual.
*/
PICKFUNC(Lpick, 1, 1,
{
handle_pick(pn>0, &point, vn>0, &vertex, en>0, edge);
b
handle_pick(picked, p, vert, v, edge, e)
int picked; /*
int vert; /*
int edge; /*
HPoint3 *p; /* coords of pick point
HPoint3 *v; /* coords of picked vertex
HPoint3 e[2]; /*

Normalize (&e[0]);
Normalize(&e[1]);
Normalize(p);
progn(); {

if (!'picked) {

/*

printf (" (geometry \"pick\" {

} else {
/*

* Put the box in place, and

* yellow if not.

*/

coords of endpoints of picked

Normalize makes 4th coord 1.0

LIST })\n");

color it magenta if it’s on a

printf (" (xform-set pick { 1 000 0100 0010 ¥%g %g

p—>x, p->y, p—>z);

printf (" (geometry \"pick\"\n");
if (vert) printf("{ appearance { material { diffuse 1 0 1 } }\n");
else printf ("{ appearance { material { diffuse 1 1 0 } }\n");

printf(" { LIST { :littlebox }\n");

/*

* If it’s on an edge and not a vertex, mark the edge
* with cyan boxes at the endpoins and a black line

* along the edge.
*/
if (edge && !vert) {

*/
*/
*/
*/
*/
edge */
*/
vertex,
hg 1 H\n",l

Chapter 6: External Modules 85

}

e[0].x -= p—>x; e[0].y —= p—>y; e[0].z —= p—>z;
e[1].x -= p—>x; e[l]l.y -= p->y; el[ll.z -= p->z;
printf ("{ appearance { material { diffuse 0 1 1 } }\n\
LIST\n\
{ INST transform 1 0 0 001 000 0 10 %f %f %f 1 geom :littlebox }\n\li
{ INST transform 1 0 0 0 01 000 0 10 %f %f %f 1 geom :1littlebox }\n\lii
{ VECT\n\
1 2 1\n\
2\n\
1\n\
ht %t %f\n\
ht %t %f\n\

110 1\n\
Hn\
Hn",
e[0].x, e[0].y, el[0].z,
el[1].x, el1]l.y, ell1].z,
e[0].x, e[0].y, el[0].z,
el1] .x, el1]l.y, el1].2);
}
printf (" No N\n)\n");
}

} endprogn();

Normalize (HPoint3 *p)

{

}

if (p->w !'=0) {
p—>x /= p—>w;
P>y /= p—>w;
p—>z /= p->w;
p—>w =1;

X

main()

{

Lake *lake;
LObject *1it, *val;
extern char *getenv();

Initialize();

lake = LakeDefine(stdin, stdout, NULL);
while (!feof(stdin)) {

Chapter 6: External Modules 86

/* Parse next lisp expression from stdin.
*/
lit = LSexpr(lake);

/* Evaluate that expression; this is where Lpick() gets called.
*/
val = LEval(lit);

/* Free the two expressions from above.
*/
LFree(lit);
LFree(val);
}
}

The code begins by defining procedures progn() and endprogn() which begin and end
a Geomview progn group. The purpose of the Geomview progn command is to group
commands together and cause Geomview to execute them all at once, without refreshing
any graphics windows until the end. It is a good idea to group blocks of commands that a
module sends to Geomview like this so that the user sees their cumulative effect all at once.

Procedure Initialize() does various things needed at program startup time. It ini-
tializes the lisp library by calling LInit (). Any program that uses the lisp library should
call this once before calling any other lisp library functions. It then calls LDefun to tell
the library about our pick procedure, which is defined further down with a call to the
DEFPICKFUNC macro. Then it sends a bunch of setup commands to Geomview, grouped in
a progn block. This includes defining a handle called 1ittlebox that stores the geometry
of the little box. Next it sends the command

(interest (pick world * * * * nil nil nil nil nil))
which tells Geomview to notify us when a pick event happens.

The syntax of this interest statement merits some explanation. In general interest
takes one argument which is a (parenthesized) expression representing a Geomview function
call. Tt specifies a type of call that the module is interested in knowing about. The arguments
can be any particular argument values, or the special symbols * or nil. For example, the
first argument in the pick expression above is world. This means that the module is
interested in calls to pick where the first argument, which specifies the coordinate system,
is world. A * is like a wild-card; it means that the module is interested in calls where the
corresponding argument has any value. The word nil is like *, except that the argument’s
value is not reported to the module. This is useful for cutting down on the amount of data
that must be transmitted in cases where there are arguments that the module doesn’t care
about.

The second, third, fourth, and fifth arguments to the pick command give the name, pick
point coordinates, vertex coordinates, and edge coordinates of a pick event. We specify these
by *’s above. The remaining five arguments to the pick command give other information
about the pick event that we do not care about in this module, so we specify these with
nil’s. For the details of the arguments to pick, See (undefined) [GCL], page (undefined).

The geometry statement defines a geom called pick that is initially an empty list,
specified as { LIST } ; this is the best way of specifying a null geom. The module will

Chapter 6: External Modules 87

replace this with something useful by sending Geomview another geometry command when
the user picks something. Next we arrange for the pick object to be non-pickable, and turn
normalization off for it so that Geomview will display it in the size and location where we
put it, rather than resizing and relocating it to fit into the unit cube.

The next function in the file, Lpick, is defined with a strange looking call to a macro
called PICKFUNC, defined in the header file ‘pickfunc.h’. This is the function for handling
pick events. The reason we provide a macro for this is that that macro encapsulates a lot
of necessary stuff that would be the same for the pick-handling function in any program.
If you write a Geomview module that wants to know about user pick events you can just
copy this macro call and change it to suit yours needs.

In general the syntax for PICKFUNC is

PICKFUNC(name, maxfaceverts, maxpathlen, block)

where name is the name of the procedure to be defined, in this case Lpick. The next
two arguments, maxfaceverts and maxpathlen, give the sizes to be used for declaring two
local variable arrays in the body of the procedure. These arrays are for storing information
about the picked face and the picked primitive’s path. In this module we don’t care about
this information (it corresponds to some of the things masked out by the nil’s in the
interest call above) so we specify 1, the minimum allowable, for both of these. The last
argument, block, is a block of code to be executed when a pick event occurs. The block
should be delimited by curly braces. The code in your block should not include any return
statements.

PICKFUNC declares certain local variables in the body of the procedure. When the module
receives a (pick...) statement from Geomview, the procedure assigns values to these
variables based on the information in the pick call. (Variables corresponding to nil’s in
the (interest (pick ...)) are not given values.) These variables are:

char *coordsys;
A string specifying the coordinate system in which coordinates are given. In
this example, this will always be world because of the interest call above.

char *id; A string specifying the name of the picked geom.

HPoint3 point; int pn;
point is an HPoint3 structure giving the coordinates of the picked point.
HPoint3 is a homogeneous point coordinate representation equivalent to an
array of 4 floats. pn tells how many coordinates have been written into this
array; it will always be either 0 or 4. A value of zero means no point was picked,
i.e. the user clicked the right mouse button while the cursor was not pointing
at a geom.

HPoint3 vertex; int vn;
vertex is an HPoint3 structure giving the coordinates of the picked vertex, if
the pick point was near a vertex. vn tells how many coordinates have been
written into this array; it will always be either 0 or 4. A value of zero means
the pick point was not near a vertex.

HPoint3 edge[2]; int en;
edge is an array of two HPoint3 structures giving the coordinates of the end-
points of the picked edge, if the pick point was near an edge. en tells how many

Chapter 6: External Modules 88

coordinates have been written into this array; it will always be either 0 or 8. A
value of zero means the pick point was not near an edge.

In this example module, the remaining variables will never be given values because their
values in the interest statement were specified as nil.

HPoint3 face [maxfaceverts] ; int fn;
face is an array of maxfaceverts HPoint3’s; maxfaceverts is the value specified
in the PICKFUNC call. face gives the coordinates of the vertices of the picked
face. fn tells how many coordinates have been written into this array; it will
always be a multiple of 4 and will be at most 4*maxfaceverts. A value of zero
means the pick point was not near a face.

HPoint3 ppath[maxpathlen; int ppn;
ppath is an array of maxpathlen int’s; maxpathlen is the value specified in
the PICKFUNC call. ppath gives the path through the OOGL heirarchy to the
picked primitive. pn tells how many integers have been written into this array;
it will be at most maxpathlen. A path of {3,1,2}, for example, means that the
picked primitive is "subobject number 2 of subobject number 1 of object 3 in
the world".

int vi; vi gives the index of the picked vertex in the picked primitive, if the pick point
was near a vertex.

int ei[2]; int ein
The ei array gives the indices of the endpoints of the picked edge, if the pick
point was near a vertex. ein tells how many integers were written into this
array. It will always be either 0 or 2; a value of 0 means the pick point was not
near an edge.

int fi; fi gives the index of the picked face in the picked primitive, if the pick point
was near a face.

The handle_pick procedure actually does the work of dealing with the pick event. It
begins by normalizing the homogeneous coordinates passed in as arguments so that we can
assume the fourth coordinate is 1. It then sends gcl commands to define the pick object to
be whatever is appropriate for the kind of pick recieved. See see (undefined) [OOGL File
Formats], page (undefined), and see (undefined) [GCL], page (undefined), for an explanation
of the format of the data in these commands.

The main program, at the bottom of the file, first calls Initialize (). Next, the call
to LakeDefine defines the Lake that the lisp library will use. A Lake is a structure that
the lisp library uses internally as a type of communiation vehicle. (It is like a unix stream
but more general, hence the name.) This call to LakeDefine defines a Lake structure for
doing I/O with stdin and stdout. The third argument to LakeDefine should be NULL for
external modules (it is used by Geomview). Finally, the program enters its main loop which
parses and evaluates expressions from standard input.

Chapter 6: External Modules 89

6.6 Example 4: Simple Tcl/Tk Module Demonstrating
Picking

It’s not necessary to write a Geomview module in C. The only requirement of an external
module is that it send GCL commands to its standard output and expect responses (if any)
on its standard input. An external module can be written in C, perl, tcl/tk, or pretty much
anything.

As an example, assuming you have Tcl/ Tk version 4.0 or later, here’s an external module
with a simple GUI which demonstrates interaction with geomview. This manual doesn’t
discuss the Tcl/Tk language; see the good book on the subject by its originator John
Ousterhout, published by Addison-Wesley, titled Tcl and the Tk Toolkit.

The ‘#!’ on the script’s first line causes the system to interpret the script using the
Tcl/Tk ‘wish’ program; you might have to change its first line if that’s in some location
other than /usr/local/bin/wish4.0. Or, you could define it as a module using

(emodule-define "Pick Demo" "wish pickdemo.tcl")
in which case ‘wish’ could be anywhere on the UNIX search path.
#! /usr/local/bin/wish4.0

We use "fileevent" below to have "readsomething" be called whenever
data is available from standard input, i.e. when geomview has sent us
something. It promises to include a trailing newline, so we can use
"gets" to read the geomview response, then parse its nested parentheses]
into tcl-friendly {} braces.

H OH H H R

proc readsomething {} {
if {[gets stdin line] < 0} {
puts stderr "EOF on input, exiting..."
exit
}
regsub -all {\(} $line "\{" line
regsub -all {\)} $line "\}" line
Strip outermost set of braces
set stuff [lindex $line 0]
Invoke handler for whichever command we got. Could add others here,
if we asked geomview for other kinds of data as well.
switch [lindex $stuff 0] {
pick {handlepick $stuff}
rawevent {handlekey $stuff}
}
}

Fields of a "pick" response, from geomview manual:

(pick COORDSYS GEOMID G V E F P VI EI FI)

The pick command is executed internally in response to pick
events (right mouse double click).
#
#
#

COORDSYS = coordinate system in which coordinates of the followingfi
arguments are specified. This can be:

Chapter 6: External Modules 90

VI = index of picked vertex in primitive
EI
FI

list of indices of endpoints of picked edge, if any
index of picked face

world: world coord sys

self: coord sys of the picked geom (GEOMID)

primitive: coord sys of the actual primitive within
the picked geom where the pick occurred.

GEOMID = id of picked geom

G = picked point (actual intersection of pick ray with object)]]
V = picked vertex, if any

E = picked edge, if any

F = picked face

P = path to picked primitive [0 or more]

#

#

#

Report when user picked something.
#
proc handlepick {pick} {
global nameof selvert seledge order
set obj [lindex $pick 2]
set xyzw [lindex $pick 3]
set fv [lindex $pick 6]
set vi [lindex $pick 8]
set ei [lindex $pick 9]
set fi [lindex $pick 10]

Report result, converting 4-component homogeneous point into 3-space point.J]
set w [lindex $xyzw 3]
set x [expr [lindex $xyzw 0]/$w]
set y [expr [lindex $xyzw 1]/$w]
set z [expr [lindex $xyzw 2]/$w]
set s "$x $y $z "
if {$vi >= 0} {
set s "$s vertex #$vi"
X
if {$ei '= {3} {
set s "$s edge [lindex $ei 0]-[lindex $ei 1]"
}
if {$fi t= -1} {
set s "$s face #$fi ([expr [llength $fv]/3]-gon)"
}
msg $s

Having asked for notification of these raw events, we report when
the user pressed these keys in the geomview graphics windows.

proc handlekey {event} {

Chapter 6: External Modules 91

global lastincr
switch [lindex $event 1] {
32 {msg "Pressed space bar"}
8 {msg "Pressed backspace key"}

X
X
#
Display a message on the control panel, and on the terminal where geomview]]
was started. We use ‘‘puts stderr ...’’ rather than simply ‘‘puts ...’7,|J]
since Geomview interprets anything we send to standard output
as a GCL command!
#

proc msg {str} {
global msgtext
puts stderr $str
set msgtext $str
update

}

Load object from file
proc loadobject {fname} {
if {$fname != ""} {
puts "(geometry thing < $fname)"
Be sure to flush output to ensure geomview receives this now!
flush stdout

Build simple "user interface"

The message area could be a simple label rather than an entry box,
but we want to be able to use X selection to copy text from it.
The default mouse bindings do that automatically.

entry .msg -textvariable msgtext -width 45
pack .msg

frame .f

label .f.1 -text "File to load:"
pack .f.1 -side left

entry .f.ent -textvariable fname
pack .f.ent -side left -expand true -fill x
bind .f.ent <Return> { loadobject $fname }

Chapter 6: External Modules 92

pack .f

End UI definition.

Call "readsomething" when data arrives from geomview.
fileevent stdin readable {readsomething}

Geomview initialization

puts {
(interest (pick primitive))
(interest (rawevent 32)) # Be notified when user presses space
(interest (rawevent 8)) # or backspace keys.
(geometry thing < hdodec.off)
(normalization world none)
}

Flush to ensure geomview receives this.
flush stdout

wm title . {Sample external module}

msg "Click right mouse in graphics window"

6.7 Module Installation

This section tells how to install an external module so you can invoke it within Geomview.
There are two ways to install a module: you can install a private module so that the module
is available to you whenever you run Geomview, or you can install a system module so that
the module is available to all users on your system whenever they run Geomview.

6.7.1 Private Module Installation

The emodule-define command arranges for a module to appear in Geomview’s Modules
browser. emodule-define takes two string arguments; the first is the name that will appear
in the Modules browser. The second is the shell command for running the module; it may
include arguments. Geomview executes this command in a subshell when you click on the
module’s entry in the browser. For example

(emodule-define "Foo" "/u/home/modules/foo -x")

adds a line labeled "Foo" to the Modules browser which causes the command
" /u/home/modules/foo -x" to be executed when selected.

You may put emodule-define commands in your ‘/.geomview’ file to arrange for cer-
tain modules to be available every time you run Geomview; See (undefined) [Customization],

Chapter 6: External Modules 93

page (undefined). You can also execute emodule-define commands from the Commands
panel to add a module to an already running copy of Geomview.

There are several other gcl commands for controlling the entries in the Modules browser;
for details, See (undefined) [GCL], page (undefined).

6.7.2 System Module Installation

To install a module so that it is available to all Geomview users do the following

1. Create a file called ‘.geomview-module’ where ‘module’ is the name of the
module. This file should contain a single line which is an emodule-define
command for that module:

(emodule-define "New Module" "newmodule")

The first argument, "New Module" above, is the string that will appear in the
Modules browser. The second string, "newmodule" above, is the Bourne shell
command for invoking the module. It may include arguments, and you may
assume that the module is on the $path searched by the shell.

2. Put a copy of the ‘.geomview-module’ and the module executable itself in

Geomview’s ‘modules/<CPU>’ directory, where ‘<CPU>’ is your system type.

After these steps, the new module should appear, in alphabetical position, in the Modules
browser of Geomview’s Main panel next time Geomview is run. The reason this works is
that when Geomview is invoked it processes all the ‘.geomview-*’ files in its ‘modules’
directory. It also remembers the pathname of this directory and prepends that path to the
$path of the shell in which it invokes such a module.

Chapter 7: gcl: the Geomview Command Language 94

7 gcl: the Geomview Command Language

Gcl has the syntax of lisp — i.e. an expression of the form (fa b ...) means pass the values
of a, b, ... to the function f. Gcl is very limited and is by no means an implementation of
lisp. It is simply a language for expressing commands to be executed in the order given,
rather than a programming language. It does not support variable or function definition.

Gcl is the language that Geomview understands for files that it loads as well as for
communication with other programs. To execute a gcl command interactively, you can
bring up the Commands panel which lets you type in a command; Geomview executes the
command when you hit the key. Output from such commands is printed to standard
output. Alternately, you can invoke Geomview as geomview -c¢ - which causes it to read
gcl commands from standard input.

Gcl functions return a value, and you can nest function calls in ways which use this
returned value. For example

(f (g a b))

evaluates (g a b) and then evaluates (f x) where x is the result returned by (g a b).
Geomview maintains these return values internally but does not normally print them out.
To print out a return value pass it to the echo function. For example the geomview-version
function returns a string representing the version of Geomview that is running, and

(echo (geomview-version))
prints out this string.

Many functions simply return t for success or nil for failure; this is the case if the
documentation for the function does not indicate otherwise. These are the lisp symbols for
true and false, respectively. (They correspond to the C variables Lt and Lnil which you are
likely to see if you look at the source code for Geomview or some of the external modules.)

In the descriptions of the commands below several references are made to "OOGL" for-
mats. OOGL is the data description language that Geomview uses for describing geometry,
cameras, appearances, and other basic objects. For details of the OOGL formats, See (un-
defined) [OOGL File Formats|, page (undefined). (Or equivalently, see the oogl(5) manual
page, distributed with Geomview in the file man/cat5/oogl.5.

The gcl commands and argument types are listed below. Most of the documentation
in this section of the manual is available within Geomview via the ? and ?? commands.
The command (? command) causes Geomview to print out a one-line summary of the
syntax of command, and (7?7 command) prints out an explanation of what command does.
You can include the wild-card character * in command to print information for a group
of commands matching a pattern. For example, (?? *emodule*) will print all information
about all commands containing the string emodule. (7 *) will print a short list of all
commands.

7.1 Conventions Used In Describing Argument Types

The following symbols are used to describe argument types in the documentation for gcl
functions.

Chapter 7: gcl: the Geomview Command Language 95

appearance

cam-id
camera
geom-id
geometry

id

is an OOGL appearance specification.
is an id that refers to a camera.

is an OOGL camera specification.

is an id that refers to a geometry.

is an OOGL geometry specification.

is a string which names a geometry or camera. Besides those you create, valid
ones are:

World, world, worldgeom, gO
the collection of all geom’s

target selected target object (cam or geom)
center selected center-of-motion object
targetcam

last selected target camera

targetgeom
last selected target geom

focus camera where cursor is (or most recently was)
allgeoms all geom objects
allcams all cameras

default, defaultcam, prototype
future cameras inherit default’s settings

The following ids are used to name coordinate systems, e.g. in pick and write
commands:

World, world, worldgeom, gO
the world, within which all other geoms live.

universe the universe, in which the World, lights and cameras live. Cameras’
world2cam transforms might better be called universe2cam, etc.

self "this Geomview object". Transform from an object to self is the
identity; writing its geometry gives the object itself with no enclos-
ing transform; picked points appear in the object’s coordinates.
primitive
(for pick only) Picked points appear in the coordinate system of
the lowest-level OOGL primitive.

A name is also an acceptable id. Given names are made unique by appending
numbers if necessary (i.e. f00<2>). Every geom is also named g[n] and every
camera is also named c[n] (g0 is always the worldgeom): this name is used as
a prefix to keyboard commands and can also be used as a gcl id. Numbers are
reused after an object is deleted. Both names are shown in the Object browser.

Chapter 7: gcl: the Geomview Command Language 96

statement represents a function call. Function calls have the form (func argl arg2...),
where func is the name of the function and argl, arg?2, ... are the arguments.

transform is an OOGL 4x4 transformation matrix.

window is an OOGL winddow specification.

7.2 Gcl Reference Guide

! is a synonym for shell
(< EXPR1 EXPR2)

Returns t if EXPRI1 is less than EXPR2. EXPR1 and EXPR2 should be either
both integers or floats, or both strings.

(= EXPR1 EXPR2)
Returns t if EXPRI1 is equal to EXPR2. EXPR1 and EXPR2 should be either
both integers or floats, or both strings.

(> EXPR1 EXPR2)
Returns t if EXPRI1 is greater than EXPR2. EXPR1 and EXPR2 should be
either both integers or floats, or both strings.

(? [command])
Gives one-line usage summary for command. Command may include *s as wild-
cards; see also 7?7 One-line command help; lists names only if multiple com-
mands match. ? is a synonym for help

(7?7 command) command may include * wildcards
Prints more info than (? command). 77 is a synonym for morehelp.

| is a synonym for emodule-run.

(all geometry) returns a list of names of all geometry objects.
Use e.g. ‘(echo (all geometry))’ to print such a list.

(all camera) returns a list of names of all cameras.

(all emodule defined) returns a list of all defined external modules.
(all emodule running) returns a list of all running external modules.
(ap-override [on|off])

Selects whether appearance controls should override objects’ own settings. On
by default. With no arguments, returns current setting.

(backcolor CAM-ID R G B)
Set the background color of CAM-ID; R G B are numbers between 0 and 1.

(background-image CAM-ID [FILENAME])
Use the given image as the background of camera CAM-ID (which must be a
real camera, not default or allcams). Centers the image on the window area.
Works only with GL and OpenGL graphics. Use "" for filename to remove
background. With no filename argument, returns name of that window’s current
background image, or "". Any file type acceptable as a texture is allowed, e.g.
.ppm.gz, .sgi, etc.

Chapter 7: gcl: the Geomview Command Language 97

(bbox-color GEOM-IDR G B)
Set the bounding-box color of GEOM-ID; R G B are numbers between 0 and
1.

(bbox-draw GEOM-ID [yes|no])
Say whether GEOM-ID’s bounding-box should be drawn; yes if omitted.

(camera CAM-ID [CAMERA])
Specify data for CAM-ID; CAMERA is a string giving an OOGL camera, spec-
ification. If no camera CAM-ID exists, it is created; in this case, the second
argument is optional, and if omitted, a default camera is used. See also: new-
camera.

(camera-draw CAM-ID [yes|no])
Say whether or not cameras should be drawn in CAM-ID; yes if omitted.

(camera-prop { geometry object } [projective])
Specify the object to be shown when drawing other cameras. By default, this
object is drawn with its origin at the camera, and with the camera looking
toward the object’s -Z axis. With the projective keyword, the camera’s view-
ing projection is also applied to the object; this places the object’s Z=-1 and
Z=+1 at near and far clipping planes, with the viewing area -1<={X,Y}<=+1.
Example: (camera-prop { < cube } projective)

(camera-reset CAM-ID)
Reset CAM-ID to its default value.

(car LIST)
returns the first element of LIST.

(cdr LIST)
returns the list obtained by removing the first element of LIST.

(clock) Returns the current time, in seconds, as shown by this stream’s clock. See also
set-clock and sleep-until.

(command INFILE [OUTFILE])
Read commands from INFILE; send corresponding responses (e.g. anything
written to filename -) to OUTFILE, stdout by default.

(copy [ID] [name])
Copies an object or camera. If ID is not specified, it is assumed to be target-
geom. If name is not specified, it is assumed to be the same as the name of
ID.

(cursor-still [INT])
Sets the number of microseconds for which the cursor must not move to register
as holding still. If INT is not specified, the value will be reset to the default.

(cursor-twitch [INT])
Sets the distance which the cursor must not move (in x or y) to register as
holding still. If INT is not specified, the value will be reset to the default.

Chapter 7: gcl: the Geomview Command Language 98

(delete ID)
Delete object or camera ID.

(dice GEOM-ID N)
Dice any Bezier patches within GEOM-ID into NxN meshes; default 10. See
also the appearance attribute dice, which makes this command obsolete.

(dimension [N])
Sets or reads the space dimension for N-dimensional viewing. (Since cal-
culations are done using homogeneous coordinates, this means matrices are
(N+1)x(N+1).) With no arguments, returns the current dimension, or 0 if N-
dimensional viewing has not been enabled.

(dither CAM-ID {on|off|toggle})
Turn dithering on or off in that camera.

(draw CAM-ID)
Draw the view in CAM-ID, if it needs redrawing. See also redraw.

(echo ...)
Write the given data to the special file -. Strings are written literally; lisp
expressions are evaluated and their values written. If received from an external
program, echo sends to the program’s input. Otherwise writes to geomview’s
own standard output (typically the terminal).

(emodule-clear)
Clears the geomview application (external module) browser.

(emodule-define NAME SHELL-COMMAND ...)
Define an external module called NAME, which then appears in the external-
module browser. The SHELL-COMMAND string is a UNIX shell command
which invokes the module. See emodule-run for discussion of external modules.

(emodule-defined modulename)
If the given external-module name is known, returns the name of the pro-
gram invoked when it’s run as a quoted string; otherwise returns nil. (echo
(emodule-defined name)) prints the string.

(emodule-isrunning NAME)
Returns Lt if the emodule NAME is running, or Lnil if it is not running. NAME
is searched for in the names as they appear in the browser and in the shell
commands used to execute the external modules (not including arguments).

(emodule-path)
Returns the current search path for external modules. Note: to actually see
the value returned by this function you should wrap it in a call to echo: (echo
(emodule-path)). See also set-emodule-path.

(emodule-run SHELL-COMMAND ARGS...)
Runs the given SHELL-COMMAND (a string containing a UNIX shell com-
mand) as an external module. The module’s standard output is taken as ge-
omview commands; responses (written to filename -) are sent to the module’s

Chapter 7: gcl: the Geomview Command Language 99

standard input. The shell command is interpreted by /bin/sh, so e.g. I1/0O
redirection may be used; a program which prompts the user for input from the
terminal could be run with: (emodule-run yourprogram <&2) If not already
set, the environment variable SMACHTYPE is set to the name of the machine
type. Input and output connections to geomview are dropped when the shell
command terminates. Clicking on a running program’s module-browser entry
sends the signal SIGHUP to the program. For this to work, programs should
avoid running in the background; those using FORMS or GL should call fore-
ground() before the first FORMS or winopen() call. See also emodule-define,
emodule-start.

(emodule-sort)
Sorts the modules in the application browser alphabetically.

(emodule-start NAME)
Starts the external module NAME, defined by emodule-define. Equivalent to
clicking on the corresponding module-browser entry.

(emodule-transmit NAME LIST)
Places LIST into external module NAME’s standard input. NAME is searched
for in the names of the modules as they appear in the External Modules browser
and then in the shell commands used to execute the external modules. Does
nothing if modname is not running.

(escale GEOM-ID FACTOR)
Same as scale but multiplies by exp(scale). Obsolete.

(event-keys {on|off})
Turn keyboard events on or off to enable/disable keyboard shortcuts.

(event-mode MODESTRING)
Set the mouse event (motion) mode; MODESTRING should be one of the
strings that appears in the motion mode browser (including the keyboard short-
cut, e.g. [r] Rotate).

(event-pick {on|off})
Turn picking on or off.

(evert GEOM-ID [yes|no])
Set the normal eversion state of GEOM-ID. If the second argument is omitted,
toggle the eversion state.

(exit) Terminates geomview.

(ezoom GEOM-ID FACTOR)
Same as zoom but multiplies by exp(zoom). Obsolete.

(freeze CAM-ID)
Freeze CAM-ID; drawing in this camera’s window is turned off until it is ex-
plicitly redrawn with (redraw CAM-ID), after which time drawing resumes as
normal.

Chapter 7: gcl: the Geomview Command Language 100

(geometry GEOM-ID [GEOMETRY])
Specify the geometry for GEOM-ID. GEOMETRY is a string giving an OOGL
geometry specification. If no object called GEOM-ID exists, it is created; in
this case the GEOMETRY argument is optional, and if omitted, the new object
GEOM-ID is given an empty geometry.

(geomview-version)
Returns a string representing the version of geomview that is running.

(hdefine geometry|cameraltransform|window name value)
Sets the value of a handle of a given type.

(hdefine <type> <name> <value>)
is generally equivalent to
(read <type> { define <name> <value> })

except that the assignment is done when hdefine is executed, (possibly not
at all if inside a conditional statement), while the read ... define performs
assignment as soon as the text is read.

(help [command])
Command may include *s as wildcards; see also 7?7 One-line command help;
lists names only if multiple commands match.

(hmodel CAMID {virtual|projective|conformall})
Set the model used to display geometry in this camera; see also space.

(hsphere-draw CAMID [yes|nol)
Say whether to draw a unit sphere: the sphere at infinity in hyperbolic space,
and a reference sphere in Euclidean and spherical spaces. If the second argument
is omitted, yes is assumed.

(if TEST EXPR1 [EXPR2])
Evaluates TEST; if TEST returns a non-nil value, returns the value of EXPRI.
If TEST returns nil, returns the value of EXPR2 if EXPR2 is present, otherwise
returns nil.

(inhibit-warning STRING)
Inhibit warning inhbits geomview from displaying a particular warning message
determined by STRING. At present there are no warning messages that this
applies to, so this command is rather useless.

(input-translator "#prefix_string" "Bourne-shell-command")
Defines an external translation program for special input types. When asked to
read a file which begins with the specified string, geomview invokes that pro-
gram with standard input coming from the given file. The program is expected
to emit OOGL geometric data to its standard output. In this implementation,
only prefixes beginning with # are recognized. Useful as in

(input-translator "#VRML" "vrml2oogl")

(interest (COMMAND [args]))
Allows you to express interest in a command. When geomview executes that
command in the future it will echo it to the communication pool from which

Chapter 7: gcl: the Geomview Command Language 101

the interest command came. COMMAND can be any command. Args specify
restrictions on the values of the arguments; if args are present in the interest
command, geomview will only echo calls to the command in which the argu-
ments match those given in the interest command. Two special argument values
may appear in the argument list. * matches any value. nil matches any value
but supresses the reporting of that value; its value is reported as nil.

The purpose of the interest command is to allow external modules to find out
about things happening inside geomview. For example, a module interested
in knowing when a geom called foo is deleted could say (interest (delete
f00)) and would receive the string (delete foo) when foo is deleted.

Picking is a special case of this. For most modules interested in pick events
the command (interest (pick world)) is sufficient. This causes geomview
to send a string of the form (pick world ...) every time a pick event (right
mouse double click). See the pick command for details.

(1ines-closer CAM-ID DIST)
Draw lines (including edges) closer to the camera than polygons by DIST / 10°5
of the Z-buffer range. DIST = 3.0 by default. If DIST is too small, a line lying
on a surface may be dotted or invisible, depending on the viewpoint. If DIST
is too large, lines may appear in front of surfaces that they actually lie behind.
Good values for DIST vary with the scene, viewpoint, and distance between
near and far clipping planes. This feature is a kludge, but can be helpful.

(load filename [command|geometry|camera])
Loads the given file into geomview. The optional second argument specifies
the type of data it contains, which may be command (geomview commands),
geometry (OOGL geometric data), or camera (OOGL camera definition). If
omitted, attempts to guess about the file’s contents. Loading geometric data
creates a new visible object; loading a camera opens a new window; loading a
command file executes those commands.

(load-path)
Returns the current search path for command, geometry, etc. files. Note: to
actually see the value returned by this function you should wrap it in a call to
echo: (echo (load-path)). See also set-load-path.

(1ook [objectID] [cameraID])

Rotates the named camera to point toward the center of the bounding box
of the named object (or the origin in hyperbolic or spherical space). In Eu-
clidean space, moves the camera forward or backward until the object appears
as large as possible while still being entirely visible. Equivalent to progn (
(look-toward [objectID] [cameralD] {center | origin}) [(look-encompass [objec-
tID] [cameralD])]) If objectID is not specified, it is assumed to be World. If
cameralD is not specified, it is assumed to be targetcam.

(look-encompass [objectID] [cameraID])
Moves cameralD backwards or forwards until its field of view surrounds objec-
tID. This routine works only in Euclidean space. If objectID is not specified,

Chapter 7: gcl: the Geomview Command Language 102

it is assumed to be the world. If cameralD is not specified, it is assumed to be
the targetcam. See also (look-encompass-size).

(look-encompass-size [view-fraction clip-ratio near-margin far-margin])
Sets/returns parameters used by (look-encompass). view-fraction is the portion
of the camera window filled by the object, clip-ratio is the max allowed ratio
of near-to-far clipping planes. The near clipping plane is 1/near-margin times
closer than the near edge of the object, and the far clipping plane is far-margin
times further away. Returns the list of current values. Defaults: .75 100 0.1 4.0

(look-recenter [objectID] [cameralID])
Translates and rotates the camera so that it is looking in the -z direction (in
objectID’s coordinate system) at the center of objectID’s bounding box (or the
origin of the coordinate system in non-Eudlidean space). In Euclidean space,
the camera is also moved as close as possible to the object while allowing the
entire object to be visible. Also makes sure that the y-axes of objectID and
cameralD are parallel.

(look-toward [objectID] [cameralD] [origin | center])
Rotates the named camera to point toward the origin of the object’s coordinate
system, or the center of the object’s bounding box (in non-Euclidean space,
the origin will be used automatically). Default objectID is the world, default
camera is targetcam, default location to point towards is the center of the
bounding box.

(merge {window|camera} CAM-ID { WINDOW or CAMERA ... })
Modify the given window or camera, changing just those properties specified in
the last argument. E.g. (merge camera Camera { far 20 }) sets Camera’s far
clipping plane to 20 while leaving other attributes untouched.

(merge-ap GEOM-ID APPEARANCE)
Merge in some appearance characteristics to GEOM-ID. Appearance parame-
ters include surface and line color, shading style, line width, and lighting.

merge-base-ap is a synonym for merge-baseap.
(merge-baseap APPEARANCE)
Merge in some appearance characteristics to the base default appearance (ap-

plied to every geom before its own apperance). Lighting is typically included
in the base appearance.

(morehelp command)
command may include * wildcards. Prints more info than (help command).

(name-object ID NAME)
Assign a new NAME (a string) to ID. A number is appended if that name is
in use (for example, foo -> f00<2>). The new name, possibly with number
appended, may be used as object’s id thereafter.

(ND-axes CAMID [CLUSTERNAME [Xindex Yindex Zindex]])
In our model for N-D viewing (enabled by (dimension)), objects in N-space are
viewed by N-dimensional camera clusters. Each real camera window belongs to

Chapter 7: gcl: the Geomview Command Language 103

some cluster, and shows & manipulates a 3-D axis-aligned projected subspace
of the N-space seen by its cluster. Moving one camera in a cluster affects its
siblings.

The ND-axes command configures all this. It specifies a camera’s cluster mem-
bership, and the set of N-space axes which become the 3-D camera’s X, Y, and
7 axes. Axes are specified by their indices, from 0 to N-1 for an N-dimensional
space. Cluster CLUSTERNAME is implicitly created if not previously known.
To read a camera’s configuration, use (echo (ND-axes CAMID)).

(ND-color CAMID

[(([ID] (x0 x1 x2 ... xn) vigbavrgba..) ((x0.. xn) vrgba
vrgba..) ..)]) Specifies a function, applied to each N-D vertex, which
determines the colors of N-dimensional objects as shown in camera CAMID.
Each coloring function is defined by a vector (in ID’s coordinate system) [x0 x1
.. xn] and by a sequence of value (v)/color(r g b a) tuples, ordered by increasing
v. The inner product v = P.[x] is linearly interpolated in this table to give a
color. If ID is omitted, the (xi) vector is assumed in universe coordinates. The
ND-color command specifies a list of such functions; each vertex is colored by
their sum (so e.g. green intensity could indicate projection along one axis while
red indicated another. An empty list, as in (ND-color CAMID ()), suppresses
coloring. With no second argument, (ND-color CAMID) returns that camera’s
color-function list. Even when coloring is enabled, objects tagged with the
keepcolor appearance attribute are shown in their natural colors.

(ND-xform 0BJID [ntransform { idim odim ... }])
Sets or returns the N-D transform of the given object. In dimension N, this
is an (N+1)x(N+1) matrix. Note that all cameras in a camera-cluster have the
same N-D transform.

(ND-xform-get ID [from-ID])
Returns the N-D transform of the given object in the coordinate system of
from-ID (default universe), in the sense <point-in-ID-coords> * Transform =
<point-in-from-ID-coords>

(new-alien name [GEOMETRY])

Create a new alien (geom not in the world) with the given name (a string). GE-
OMETRY is a string giving an OOGL geometry specification. If GEOMETRY
is omitted, the new alien is given an empty geometry. If an object with that
name already exists, the new alien is given a unique name. The light beams
that are used to move around the lights are an example of aliens. They’re drawn
but are not controllable the way ordinary objects are: they don’t appear in the
object browser and the user can’t move them with the normal motion modes.

(new-camera name [CAMERA])
Create a new camera with the given name (a string). If a camera with that
name already exists, the new object is given a unique name. If CAMERA is
omitted a default camera is used.

Chapter 7: gcl: the Geomview Command Language 104

(new-center [id])
Stop id, then set id’s transform to the identity. Default id is target. Also, if
the id is a camera, calls (look-recenter World id). The main function of the call
to (look-recenter) is to place the camera so that it is pointing parallel to the z
axis toward the center of the world.

(new-geometry name [GEOMETRY])
Create a new geom with the given name (a string). GEOMETRY is a string
giving an OOGL geometry specification. If GEOMETRY is omitted, the new
object is given an empty geometry. If an object with that name already exists,
the new object is given a unique name.

(new-reset)

Equivalent to (progn (new-center ALLGEOMS)(new-center ALLCAMS))
(NeXT) Returns t if running on a NeXT, nil if not

(normalization GEOM-ID {each|none|all|keep})
Set the normalization status of GEOM-ID.

none suppresses all normalization.

each normalizes the object’s bounding box to fit into the unit sphere,
with the center of its bounding box translated to the origin. The
box is scaled such that its long diagonal, sqrt((xmax-xmin)~2 +
(ymax-ymin)~2 + (zmax-zmin)~2), is 2.

all resembles each, except when an object is changing (e.g. when its
geometry is being changed by an external program). Then, each
tightly fits the bounding box around the object whenever it changes
and normalizes accordingly, while all normalizes the union of all
variants of the object and normalizes accordingly.

keep leaves the current normalization transform unchanged when the
object changes. It may be useful to apply each or all normalization
apply to the first version of a changing object to bring it in view,
then switch to keep.

(pick COORDSYS GEOMID G VEF P VI EI FI)
The pick command is executed internally in response to pick events (right mouse
double click).

COORDSYS = coordinate system in which coordinates of the following argu-
ments are specified. This can be: world: world coord sys self: coord sys of
the picked geom (GEOMID) primitive: coord sys of the actual primitive within
the picked geom where the pick occurred. GEOMID = id of picked geom G =
picked point (actual intersection of pick ray with object) V = picked vertex, if
any E = picked edge, if any F = picked face P = path to picked primitive [0 or
more] VI = index of picked vertex in primitive EI = list of indices of endpoints
of picked edge, if any FI = index of picked face

External modules can find out about pick events by registering interest in calls
to pick via the interest command.

Chapter 7: gcl: the Geomview Command Language 105

(pick-invisible [yes|no])
Selects whether picks should be sensitive to objects whose appearance makes
them invisible; default yes. With no arguments, returns current status.

(pickable GEOM-ID {yes|no})
Say whether or not GEOM-ID is included in the pool of objects that could be
returned from the pick command.

(position objectID otherID)
Set the transform of objectID to that of otherID.

(position-at objectID otherID [center | origin])
Translate objectID to the center of the bounding box or the origin of the coor-
dinate system of otherID (parallel translation). Default is center.

(position-toward objectID otherID [center | origin])
Rotate objectID so that the center of the bounding box or the origin of the
coordinate system of the otherID lies on the positive z-axis of the first object.
Default is the center of the bounding box.

(progn STATEMENT [... 1)
evaluates each STATEMENT in order and returns the value of the last one. Use
progn to group a collection of commands together, forcing them to be treated
as a single command.

quit is a synonym for exit

(quote EXPR)
returns the symbolic lisp expression EXPR without evaluating it.

(rawevent dev val x y t)
Enter the specified raw event into the event queue. The arguments directly
specify the members of the event structure used internally by geomview. This
is the lowest level event handler and is not intended for general use.

(rawpick CAMID X Y)
Process a pick event in camera CAMID at location (X,Y) given in integer pixel
coordinates. This is a low-level procedure not intended for external use.

(read {geometry|camera|transform|command} {GEOMETRY or CAMERA or ...})
Read and interpret the text in ... as containing the given type of data. Useful
for defining objects using OOGL reference syntax, e.g.

(geometry thing { INST transform : T geom : fred }) (read geometry { define
fred QUAD1000100011001}) (read transform { define T <myfile})

(real-id ID)
Returns a string canonically identifying the given ID, or nil if the object does
not exist. Examples: (if (real-id fred) (delete fred)) deletes fred if it exists but
reports no error if it doesn’t, and (if (= (real-id targetgeom) (real-id World))
() (delete targetgeom)) deletes targetgeom if it is different from the World.

(redraw CAM-ID)
States that the view in CAM-ID should be redrawn on the next pass through
the main loop or the next invocation of draw.

Chapter 7: gcl: the Geomview Command Language 106

(regtable) —-- shows the registry table

(rehash-emodule-path)
Rebuilds the application (external module) browser by reading all .geomview-
* files in all directories on the emodule-path. Primarily intended for internal
use; any applications defined by (emodule-define ...) commands outside of the
.geomview-* files on the emodule-path will be lost. Does not sort the entries in
the brower; see (emodule-sort) for that.

(replace-geometry GEOM-ID PART-SPECIFICATION GEOMETRY)
Replace a part of the geometry for GEOM-ID.

(rib-display [frame|tiff] FILEPREFIX)

Set Renderman display to framebuffer (popup screen window) or a TIFF
format disk filee. FILEPREFIX is used to construct names of the form
prefixNNNN.suffix. (i.e. f000000.rib) The number is incremented on every
call to rib-snapshot and reset to 0000 when rib-display is called. TIFF files
are given the same prefix and number as the RIB file (i.e. foo0004.rib gener-
ates foo0004.tiff). The default FILEPREFIX is geom and the default format
is TIFF. (Note that geomview just generates a RIB file, which must then be
rendered.)

(rib-snapshot CAM-ID [filename])
Write Renderman snapshot (in RIB format) of CAM-ID to <filename>. If no
filename specified, see rib-display for explanation of the filename used.

(scale GEOM-ID FACTOR [FACTORY FACTORZ])

Scale GEOM-ID, multiplying its size by FACTOR. The factors should be pos-
itive numbers. If FACTORY and FACTORZ are present and non-zero, the
object is scaled by FACTOR in x, by FACTORY in y, and by FACTORZ in
z. If only FACTOR is present, the object is scaled by FACTOR in x, y, and
z. Scaling only really makes sense in Euclidean space. Mouse-driven scaling in
other spaces is not allowed; the scale command may be issued in other spaces
but should be used with caution because it may cause the data to extend beyond
the limits of the space.

(scene CAM-ID [GEOMETRY])
Make CAM-ID look at GEOMETRY instead of at the universe.

(set-clock TIME)
Adjusts the clock for this command stream to read TIME (in seconds) as of the
moment the command is received. See also sleep-until, clock.

(set-conformal-refine CMX [N [SHOWEDGES]])
Sets the parameters for the refinement algorithm used in drawing in the con-
formal model. CMX is the cosine of the maximum angle an edge can bend
before it is refined. Its value should be between -1 and 1; the default is 0.95;
decreasing its value will cause less refinement. N is the maximum number of
iterations of refining; the default is 6. SHOWEDGES, which should be no or
yes, determines whether interior edges in the refinement are drawn.

Chapter 7: gcl: the Geomview Command Language 107

(set-emodule-path (PATH1 ... PATHN))

Sets the search path for external modules. The PATHi should be pathnames
of directories containing, for each module, the module’s executable file and a
.geomview-<modulename> file which contains an (emodule-define ...) command
for that module. This command implicitly calls (rehash-emodule-path) to re-
build the application brower from the new path setting. The special directory
name + is replaced by the existing path, so e.g. (set-emodule-path (mydir +))
prepends mydir to the path.

(set-load-path (PATH1 ... PATHN))
Sets search path for command, geometry, etc. files. The PATHi are strings
giving the pathnames of directories to be searched. The special directory name
+ is replaced by the existing path, so e.g. (set-load-path (mydir +)) prepends
mydir to the path.

(set-motionscale X)
Set the motion scale factor to X (default value 0.5). These commands scale
their motion by an amount which depends on the distance from the frame to
the center and on the size of the frame. Specifically, they scale by dist + sca-
leof(frame) * motionscale where dist is the distance from the center to the frame
and motionscale is the motion scale factor set by this function. Scaleof(frame)
measures the size of the frame object.

(setenv name string) sets the environment variable name to the value
string; the name is visible to geomview (as in pathnames containing $name)
and to processes it creates, e.g. external modules.

(sgi) Returns t if running on an sgi machine, nil if not

(shell SHELL-COMMAND)
Execute the given UNIX SHELL-COMMAND using /bin/sh. Geomview waits
for it to complete and will be unresponsive until it does. A synonym is !.

(sleep-for TIME)
Suspend reading commands from this stream for TIME seconds. Commands al-
ready read will still be executed; sleep-for inside progn won’t delay execution
of the rest of the progn’s contents.

(sleep-until TIME)
Suspend reading commands from this stream until TIME (in seconds). Com-
mands already read will still be executed; sleep-until inside progn won’t
delay execution of the rest of the progn’s contents. Time is measured according
to this stream’s clock, as set by set-clock; if never set, the first sleep-until
sets it to 0 (so initially (sleep-until TIME) is the same as (sleep-for TIME)).
Returns the number of seconds until TIME.

(snapshot CAM-ID FILENAME [FORMAT [XSIZE [YSIZE111)
Save a snapshot of CAM-ID in the FILENAME (a string). The FORMAT argu-
ment is optional; it may be ppmscreen, sgi, ps, or ppm. A ppmscreen snapshot
is created by reading the image directly from the given window; the window is
popped above other windows and redrawn first, then its contents are written

Chapter 7: gcl: the Geomview Command Language 108

as a PPM format image. With ps, dumps a Postscript picture representing the
view from that window; hidden-surface removal might be incorrect. With ppm,
dumps a PPM-format image produced by geomview’s internal software ren-
derer; this may be of arbitrary size. If the FILENAME argument begins with
the vertical bar |, it’s interpreted as a /bin/sh command to which the PPM or
PS data should be piped. Optional XSIZE and YSIZE values are relevant only
for ppm format, and render to a window of that size (or scaled to that size, with
aspect fixed, if only XSIZE is given)

(soft-shader CAM-ID {on|off|toggle})
Select whether to use software or hardware shading in that camera.

(space {euclidean|hyperbolic|spherical})
Set the space associated with the world.

(stereowin CAM-ID [no|horizontal|vertical|colored] [gapsize])
Configure CAM-ID as a stereo window. no: entire window is a single pane,
stereo disabled
horizontal: split left /right: left is stereo eye#0, right is #1.
vertical: split top/bottom: bottom is eye#0, top is #1.
colored: panes overlap, red is stereo eye#0, cyan is #1.
A gap of gapsize pixels is left between subwindows; if omitted, subwindows
are adjacent. If both layout and gapsize are omitted, e.g. (stereowin CAM-ID),
returns current settings as a (stereowin ...) command list. This command
doesn’t set stereo projection; use merge camera or camera to set the stereyes
transforms, and merge window or window to set the pixel aspect ratio & window
position if needed.

(time-interests deltatime initial prefix [suffix])
Indicates that all interest-related messages, when separated by at least
deltatime seconds of real time, should be preceded by the string prefix and
followed by suffix; the first message is preceded by initial. All three are
printf format strings, whose argument is the current clock time (in seconds) on
that stream. A deltatime of zero timestamps every message. Typical usage:
(time-interests .1 (set-clock %g) (sleep-until %g)) or
(time-interests .1 (set-clock %g) "(sleep-until %g) (progn (set-clock %g)" ")")
or
(time-interests .1 " (set-clock %g)" "(if (> O (sleep-until %g)) (" "))".

(transform objectID centerID frameID

[rotate|translate|translate-scaled|scale] x y z [dt] [smooth])
Apply a motion (rotation, translation, scaling) to object objectID; that is, con-
struct and concatenate a transformation matrix with objectID’s transform The
3 IDs involved are the object that moves, the center of motion, and the frame
of reference in which to apply the motion. The center is easiest understood
for rotations: if centerID is the same as objectID then it will spin around its
own axes; otherwise the moving object will orbit the center object. Normally
framelD, in whose coordinate system the (mouse) motions are interpreted, is
focus, the current camera. Translations can be scaled proportional to the

Chapter 7: gcl: the Geomview Command Language 109

distance between the target and the center. Support for spherical and hyper-
bolic as well as Euclidean space is built-in: use the space command to change
spaces. With type rotate x, y, and z are floats specifying angles in RADIANS.
For types translate and translate-scaled X, y, and z are floats specifying
distances in the coordinate system of the center object. The optional dt field
allows a simple form of animation; if present, the object moves by just that
amount during approximately dt seconds, then stops. If present and followed
by the smooth keyword, the motion is animated with a 3t°2-2t~3 function, so
as to start and stop smoothly. If absent, the motion is applied immediately.

(transform-incr objectID centerID frameID

[rotatel|translate|translate-scaled|scale] x y z [dt])
Apply continuing motion: construct a transformation matrix and concatenate
it with the current transform of objectID every refresh (sets objectID’s incre-
mental transform). Same syntax as transform. If optional dt argument is
present, the object is moved at each time step such that its average motion
equals one instance of the motion per dt seconds. E.g. (transform-incr World
World World rotate 6.28318 0 0 10.0) rotates the World about its X axis at 1
turn (2pi radians) per 10 seconds.

(transform-set objectID centerID frameID
[rotate|translate|translate-scaled|scale] x y z)
Set objectID’s transform to the constructed transform. Same syntax as trans-
form.

(ui-center ID)
Set the center for user interface (i.e. mouse) controlled motions to object ID.

ui-emotion-program is an obsolete command.
Use its new eqgivalent emodule-define instead.

ui-emotion-run is an obsolete command.
Use its new eqivalent emodule_start instead.

(ui-freeze [on|off])
Toggle updating user interface panels. Off by default.

(ui-panel PANELNAME {on|off} [WINDOW])
Do or don’t display the given user-interface panel. Case is ignored in panel
names. Current PANELNAMESs are: geomview main panel tools motion con-
trols appearance appearance controls cameras camera controls lighting lighting
controls obscure obscure controls materials material properties controls com-
mand command entry box credits geomview credits By default, the geomview
and tools panels appear when geomview starts. If the optional Window is
supplied, a position clause (e.g. (ui-panel obscure on { position xmin xmax
ymin ymax }) sets the panel’s default position. (Only xmin and ymin values
are actually used.) A present but empty Window, e.g. (ui-panel obscure on
{)} causes interactive positioning.

Chapter 7: gcl: the Geomview Command Language 110

(ui-target ID [yes|nol)
Set the target of user actions (the selected line of the target object browser)
to ID. The second argument specifies whether to make ID the current object
regardless of its type. If no, then ID becomes the current object of its type
(geom or camera). The default is yes. This command may result in a change
of motion modes based on target choice.

(uninterest (COMMAND [args]))
Undoes the effect of an interest command. (COMMAND [args]) must be
identical to those used in the interest command.

(update [timestep_in_seconds])
Apply each incremental motion once. Uses timestep if it’s present and nonzero;
otherwise motions are proportional to elapsed real time.

(update-draw CAM-ID [timestep_in_seconds])
Apply each incremental motion once and then draw CAM-ID. Applies timestep
seconds’ worth of motion, or uses elapsed real time if timestep is absent or zero.

(window CAM-ID WINDOW)
Specify attributes for the window of CAM-ID, e.g. its size or initial position, in
the OOGL Window syntax. The special CAM-ID default specifies properties
of future windows (created by camera or new-camera).

(winenter CAM-ID)
Tell geomview that the mouse cursor is in the window of CAM-ID. This function
is for development purposes and is not intended for general use.

(write {command,geometry,camera,transform,window} FILENAME [ID|(ID ...)]
[self |world|universe|otherID])
write description of ID in given format to FILENAME. Last parameter chooses
coordinate system for geometry & transform: self: just the object, no transfor-
mation or appearance (geometry only) world: the object as positioned within
the World. universe: object’s position in universal coordinates; includes World-
transform other ID: the object transformed to otherID’s coordinate system.

A filename of - is a special case: data are written to the stream from which
the 'write’ command was read. For external modules, the data are sent to the
module’s standard input. For commands not read from an external program, -
means geomview’s standard output. (See also the command command.)

The ID can either be a single id or a parenthesized list of ids, like g0 or (g2 g1
dodec.off).

(write-comments FILENAME GEOMID PICKPATH)
write OOGL COMMENT objects in the GEOMID hierarchy at the level of the
pick path to FILENAME. Specifically, COMMENTS at level (a b ¢ ... fg)
will match pick paths of the form (a b ¢ ... f*) where * includes any value
of g, and also any values of possible further indices h,i,j, etc. The pick path
(returned in the pick command) is a list of integer counters specifying a subpart
of a hierarchical OOGL object. Descent into a complex object (LIST or INST)
adds a new integer to the path. Traversal of simple objects increments the

Chapter 7: gcl: the Geomview Command Language 111

counter at the current level. Individual COMMENTS are enclosed by curly
braces, and the entire string of zero, one, or more COMMENTS (written in the
order in which they are encountered during hierarchy traversal) is enclosed by
parentheses.

Note that arbitrary data can only be passed through the OOGL libraries as
full-fledged OOGL COMMENT objects, which can be attached to other OOGL
objects via the LIST type as described above. Ordinary comments in OQOOGL
files (i.e. everything after *#’ on a line) are ignored at when the file is loaded
and cannot be returned.

(write-sexpr FILENAME LISPOBJECT)
Writes the given LISPOBJECT to FILENAME. This function is intended for

internal debugging use only.

(xform ID TRANSFORM)
Concatenate TRANSFORM with the current transform of the object (apply
TRANSFORM to object ID).

(xform-incr ID TRANSFORM)
Apply continual motion: concatenate TRANSFORM with the current trans-

form of the object every refresh (set object ID’s incremental transform to
TRANSFORM).

(xform-set ID TRANSFORM)
Overwrite the current object transform with TRANSFORM (set object ID’s
transform to TRANSFORM).

(zoom CAM-ID FACTOR)
Zoom CAM-ID, multiplying its field of view by FACTOR. FACTOR should be

a positive number.

Chapter 8: Non-Euclidean Geometry 112

8 Non-Euclidean Geometry

Geomview supports hyperbolic and spherical geometry as well as Euclidean geometry.
The three buttons at the bottom of the Main panel are for setting the current geometry
type.

In each of the three geometries, three models are supported: Virtual, Projective, and
Conformal. You can change the current model with the Model browser on the Camera
panel. Each Geomview camera has its own model setting.

The default model is all three spaces is Virtual. This corresponds to the camera being
in the same space as, and moving under the same set of transformations as, the geometry
itself.

In Euclidean space Virtual is the most useful model. The other models were implemented
for hyperbolic and spherical spaces and just happen to work in Eucldiean space as well:
Projective is the same as Virtual but by default displays the unit sphere, and Conformal
displays everything inverted in the unit sphere.

In hyperbolic space, the Projective model setting gives a view of the projective ball
model of hyperbolic 3-space imbedded in Euclidean space. The camera is initially outside
the unit ball. In this model, the camera moves by Euclidean motions and geometry moves
by hyperbolic motions. Conformal model is similar but shows the conformal ball model
instead.

In spherical space, the Projective model gives a view of half of the 3-sphere imbedded
in Euclidean 3-space. Spherical motions give rise to projective transformations in the Pro-
Jjective model, and to Mobius transformations in the Conformal model. In both of these
models the camera moves by Euclidean motions.

In Projective and Conformal models, the unit sphere is drawn by default. You can turn
it off and on at will using the Draw Sphere button in the Camera panel. In the Conformal
model, polygons and edges are subdivided as necessary to make them look curved. The
parameters which determine this subdivision can be set with the set-conformal-refine
gcl command.

There are several sample hyperbolic space objects in the ‘data/geom/hyperbolic’ sub-

directory of the Geomview directory. Likewise, the subdirectory ‘data/geom/spherical’
contains several sample spherical space objects.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 113

9 Mathematica Graphics in Geomview or
RenderMan

Geomview comes with some Mathematica packages that let you use use Geomview to
display Mathematica graphics. Mathematica is a commercial mathematical software system
available from Wolfram Research, Inc.

There are two ways to do this.
1. Use Mathematica to write a graphics object to a file in OOGL format or in RIB format.
2. Use Geomview as the default display for all 3D graphics output in Mathematica.

You can also use these packages to save Mathematica graphics in RenderMan (RIB)
format.

Since the format of Mathematica graphics objects is different from the OOGL formats,
both of these methods involve translating Mathematica graphics to OOGL format. Ge-
omview is distributed with a Mathematica package which does this translation. Before
doing either of the above you must install this package.

9.1 Using Mathematica to generate OOGL files

The package ‘00GL.m’ allows Mathematica to write graphics objects in OOGL for-
mat. To use it, give the command << 00GL.m to Mathematica to load the package. The
WriteO0OGL [file, graphics] command writes an OOGL description of the 3D graphics object
graphics to the file named file.

This package also provides the Geomview command which sends a 3D graphics object to
Geomview. The first time you use this command it starts up a copy of Geomview. Later
calls send the graphics to the same Geomview. There are two ways to use the Geomview
command.

Geomview [graphics]
Sends the 3D graphics object graphics to Geomview as a geom named
Mathematica. Subsequent usage of Geomview[graphics] replaces the

Mathematica object in Geomview with the new graphics.

Geomview [name, graphics]

Sends the 3D graphics object graphics to Geomview as a geom named name.
You can use multiple calls of this form with different names to cause Geomview
to display several Mathematica objects at once and allow independent control
over them.

% math

Mathematica 2.0 for SGI Iris

Copyright 1988-91 Wolfram Research, Inc.

-- GL graphics initialized --

In[1] := <<00GL.m
In[2] := Plot3D[Sin[x + Sin[yll, {x,-2,2},{y,-2,2}]
Out[2] := -Graphics3D-

This displays graphics in the usual Mathematica way here.

Chapter 9: Mathematica Graphics in Geomview or RenderMan 114

In[3] := WriteOOGL["math.oogl", %2]

Out[3] := -Graphics3D-

This displays nothing new but writes the file ‘math.oogl’. You can now load that file into
Geomview on any computer. Alternately, you can use the Geomview command to start up
a copy of Geomview from within Mathematica.

In[5] := Geomview[%2]

Out[5] := -Graphics3D-

9.2 Using Geomview as Mathematica’s Default 3D Display

The package ‘Geomview.m’ arranges for Geomview to be the default display program for
3D graphics in Mathematica. To load it, give the command << Geomview.m to Mathematica.
Thereafter, whenever you display 3D graphics with P1ot3D or Show, Mathematica will send
the graphics to Geomview.

Loading ‘Geomview.m’ implicitly loads ‘O0GL.m’ as well, so you can use the Geomview and
WriteOOGL as described above after loading ‘Geomview.m’. You do not have to separately
load ‘00GL.m’.

% math

Mathematica 2.0 for SGI Iris

Copyright 1988-91 Wolfram Research, Inc.
-- GL graphics initialized --

In[1] := <<Geomview.m
In[2] := Plot3D[x"2 + y~2, {x, -2, 2}, {y, -2, 2}]
Out[2] := -SurfaceGraphics-

This invokes geomivew and loads the graphics object into it.
In[3] := Plot3D[{x*y + 6, RGBColor[0,x,y]}, {x,0,1}, {y,0,1}]

Out[3] := -SurfaceGraphics-
This replaces the previous Geomview object by the new object.
In[4] := Geomview[{%2,%3}]

Out[4] := {-SurfaceGraphics-, -SurfaceGraphics-}

This displays both objects at once. You also can have more than one Mathematica object at
a time on display in Geomview, and have separate control over them, by using the Geomview
command with a name, See (undefined) [OOGL.m], page (undefined).

In[5] := Graphics3D[{RGBColor[1,0,0], Line[{ {2,2,2},{1,1,1} }] }]
Out[5] := -Graphics3D-

In[6] := Geomview["myline", %5]

Chapter 9: Mathematica Graphics in Geomview or RenderMan 115

This addes the Line specified in In[5] to the existing Geomview display. It can be controlled
independently of the "Mathematica" object, which is currently the list of two plots.

In[7] := <<GL.m

If you’re on an SGI, loading GL.m returns Mathematica to its usual 3D graphics display.
The following plot will appear in a normal static Mathematica window.

In[8] := ParametricPlot3D[{Sin[x],Sin[y],Sin[x]*Cos[y]l}, {x,0,Pi},{y,0,Pi}]1}}

Out[8] := -Graphics3D-
We can return to Geomview graphics at any time by reloading ‘Geomview.m’.
In[9] := <<Geomview.m

In[10] := Show[%8]
Out [10] := -Graphics3D-

In[11] := ParametricPlot3D[
{(2*%(Cos[u] + u*Sin[ul)*Sin[v])/(1 + u~2%Sin[v]~2),
(2*x(Sin[u] - u*Cos[ul)*Sin[v])/(1 + u~2*Sin[v]~2),
Log[Tan[v/2]] + (2*Cos[v])/(1 + u~2x*Sin[v]~2)},
{u,-4,4},{v,.01,Pi-.01}]

Out[11] := -Graphics3D-

This last plot is Kuen’s surface, a surface of constant negative curvature. Parametrization
from Alfred Gray’s Modern Differential Geometry of Curves and Surfaces textbook.

9.3 Using Mathematica to generate RenderMan files

In addition to the WriteOOGL and Geomview commands described above, the package
‘O0GL.m’ also defines the command WriteRIb which writes a 3D graphics object to a Ren-
derMan RIB file: WriteRIBl[file, graphics] writes graphics to file file. RenderMan is a
commercial rendering system available from Pixar, Inc., which can produce extremely high
quality images.

In[1] := <<00GL.m

In[2] := <<Graphics/Polyhedra.m
In[3] := Graphics3D[Cube[]]
Out[3] := -Graphics3D-

In[4] := WriteRIB["cube.rib", %3]

Out[4] := -Graphics3D-
This generates the file ‘math.ri’b. This is a ready-to-render RIB file of the given geometry,
using a default camera position, lighting, and the “plastic” shader. In a shell window,
type render cube.rib to generate the image file ‘mma.tiff’. Of course, you need to have

Chapter 9: Mathematica Graphics in Geomview or RenderMan 116

RenderMan installed for this to work. A shortcut to render from inside Mathematica is
WriteRIB["!render", fool.

WriteRIb works by first converting the Mathematica graphics object to OOGL format
using WriteOOGL and then calls an external program ‘oogl2ri’b to convert OOGL to RIB
format. The oogl2rib program takes several options which you can specify in a string as
an optional third argument to WriteRIb. The default option string is " -n mma.tiff ",
which indicates that the RIB file should generate a rendered TIFF file named ‘mma.tiff’.
A particularly useful option is -g, which tells oogl2rib to convert only the geometry into a
RIB fragment. You can insert that fragment into a full RIB file of your own making with
camera, positions and shaders of your choice, to harness the full power of RenderMan.

The full usage of oogl2rib is:

oogl2rib [-n name] [-B r,g,b] [-w width] [-h height] [-fgbl L[infile] [out-
file]

By default it reads from stdin and writes to stdout. Either infile or outfile may be ‘-,

which means use stdin/stdout. The options are:

-n name Use name for the name of the rendered TIFF file (default "geom.tiff") or frame-
buffer window (default "geom.rib").

-Br,g,b Use background color (r,g,b). Each component ranges from 0 to 1. Default:
none.

-w width -h height
Rendered frame will be width by height pixels.

-f RIB file renders to on-screen framebuffer instead of TIFF file.
-g Output only the geometry in RIB format.
-b Output only a Quick Renderman clip object. Ignores -nBwhf.

9.4 Using Geomview and Mathematica on Different
Computers

It is possible to use Geomview to display graphics generated by Mathematica running on
a different computer. If you want to use Mathematica on a computer that is not networked
with your Geomview computer, you can write out chunk files in Mathematica which you
transfer to the Geomview computer and then translate to OOGL format for displaying in
Geomview.

9.4.1 Using a Networked Geomview Host

The Geomview command looks at the DISPLAY or REMOTEHOST environment variables to
try to determine if you are logged in from another computer. If either of these indicates
that you are, Geomview will attempt to run Geomview on that computer. In order for
this to work, your network must be configured such that the Mathematica computer can
successfully rsh to the Geomview computer without giving a password.

You can also explicitly set the DisplayHost option to the Geomview command to a string
which is the desired hostname, for example:

Chapter 9: Mathematica Graphics in Geomview or RenderMan 117

In[1]

<< 0OGL.m
In[2] := Plot3D[Sin[x + Sin[yl]l, {x,-2,2},{y,-2,2}]
Out[2] := -Graphics3D-

In[3] := Geomview[%3, DisplayHost->"riemann'"]
This displays the graphics %3 on the remote host named riemann.
Geomview recognizes the string "local" as a value for $DisplayHost; it forces the graph-
ics to be displayed on the local machine.

In addition to knowing the name of the machine you want to run Geomview on, Geomview
needs to know the type of that machine (the setting of the CPU variable that corresponds
to the machine; See (undefined) [Source Code Installation], page (undefined)). By default,
Geomview assumes that it is the same kind of computer as the one you are running Math-
ematica on. The MachType option lets you explicitly specify the type of the DisplayHost
computer; it should be one of the strings "sgi" or "next" or "x11".

You can use SetOptions to change the default DisplayHost and MachType. For example,

In[4] := SetOptions[Geomview, DisplayHost->"riemann", MachType->"sgi"]

arranges for Geomview to run Geomview on an SGI workstation named riemann.

9.4.2 Transporting Mathematica Files to Geomview by Hand

The auxilliary function WriteChunk is for those who can only use Mathematica on a com-
puter that Geomview isn’t installed on. WriteChunk [file, graphics] generates a file named
file which contains the graphics object graphics in the format accepted by ‘math2o0gl’.

You can transfer that file to a computer that has Geomview installed on it and then
use the programs ‘math2oogl’, ‘oogl2ri’b, and ‘geomview’ directly from the shell. These
programs are distributed in the ‘bin/<CPU>’ subdirectory of the Geomview directory, and
may have been installed so that they are on your path.

In[1]:= <<00GL.m

In[2] := P1lot3D[Sin[x + Sin[yl]l, {x,-2,2}, {y,-2,2}]
Out [2]= -SurfaceGraphics-

In[3]:= WriteChunk["mychunk",%2]
This writes the file ‘mychunk’ which contains a description of the graphics object. You can
then transfer this file to a system with Geomview and type

math2oo0gl < mychunk > mma.oogl
to convert it to the OOGL file ‘mma.oogl’ which you can then view using Geomview. This
is the equivalent of the Write0O0GL command.

For a result equivalent to the Geomview or Show commands, type
math2oogl -togeomview Mathematica geomview < mychunk

The WriteRIb command can be emulated from the shell as
math2o0o0gl < mychunk | oogl2rib -n mma.tiff

Chapter 9: Mathematica Graphics in Geomview or RenderMan 118

9.5 Details of the Mathematica->Geomview Package

The ‘00GL.m’ package uses the external program ‘math2oogl’ to convert Graphics3D
objects to OOGL format, because a compiled external program is able to do this conversion
many times faster than Mathematica.

The converter will sometimes handle colored SurfaceGraphics objects correctly that
Mathematica does not handle correctly, which means that Geomview[object] sometimes
works where Show[object] will give errors.

The converter supports the Polygon, Line, and Point graphics primitives, RGBColor
Graphics3D directives, and SurfaceGraphics objects with or without RGBColor directives,
and lists of any combination of these. It silently ignores all other directives.

The Mathematica to RenderMan conversion is actually a two-step process: Mathematica-
>O0OGL (math2o0gl), and OOGL->RenderMan (oogl2rib).

In the WriteOOGL and WriteRIb commands, filename can either be a string containing
a filename, an OutputStream object, or a string starting with a ! to send the output to
a command. Object can be a Graphics3D object, a SurfaceGraphics object, or a list of
these.

The packages work best with Mathematica 2.0 or better. With version 1.2, the Geomview
display is always on the local host.

9.6 Installing the Mathematica Packages

If Geomview is properly installed on your system according to the instructions in See
(undefined) [Installation], page (undefined), then the Mathematica-to-Geomview packages
should work as described here; there should be no need for additional installation procedures.
In practice, however, it is sometimes necessary to taylor the installation of the Mathematica
packages and/or of Geomview itself to suit the needs of a particular system. This section
contains details about how the installation works; if the Mathematica-to-Geomview con-
nection does not seem to work for you after following the Geomview installation procedure,
consult this section to see what might need to be fixed.

In this section, the phrase Geomview installation refers any of the procedures in See
(undefined) [Installation], page (undefined). The way the Mathematica packages work and
are installed is the same regardless of whether you have one of the binary distributions or
the source distribution.

1. The relevant mathematica files are ‘00GL.m’, ‘Geomview.m’, and ‘BezierPlot.m’;
Mathematica must be able to find these files. They are distributed in the
‘$GEOMRO0T/mathematica’ subdirectory of the binary distributions, and in the
‘$GEOMRO0T/src/bin/geomutil/math2o0gl’ subdirectory of the source distribution.
These files need to be in a directory that is on Mathematica’s search path. You can
look at the value of the $Path variable in a Mathematica session on your system to see
a list of the directories on Mathematica’s search path.

The Geomview installation procedure puts copies of the Mathematica packages into a
directory that you specify (MMAPACKAGEDIR). This should ensure that Mathematica can

Chapter 9: Mathematica Graphics in Geomview or RenderMan 119

find them. Alternately, you could arrange to append the pathname of the Mathmemat-
ica package subdirectory of the Geomview distribution to the $Path variable each time
you run Mathematica.

2. The package ‘00GL.m’ needs to be able to invoke the programs ‘geomview’, ‘math2o0gl’,
and ‘oogl2ri’b. The Geomview installation procedure installs these programs into a
directory that you specify for executables (BINDIR). Ideally, this directory should be
on your shell’s $path. More specifically, it should be on the $path of the shell in
which Mathematica runs; the directory ‘/usr/local/bin’ is usually a good choice.
You can see the list of directories on this path by giving the command !echo $path in
Mathematica.

If for some reason you can’t arrange for ‘geomview’, ‘math2o0o0gl’, and ‘oogl2ri’b to
be in a directory on the shell’s $path, you can modify ‘00GL.m’ to cause it to look for
them using absolute pathnames. To do this, change the definitions of the variables
$GeomviewPath and $GeomRoot, which are defined near the top of the file. Change
$GeomviewPath to the absolute pathname of the ‘geomview’ shell script on your system.
Change $GeomRoot to the absolute pathname of the ‘$GEOMROOT’ directory on your
system. If you do this, you should also make sure there are copies of ‘geomview’,
‘math2o0gl’, and ‘oogl2ri’b in the ‘$GEOMROOT/bin/<CPU>’.

3. The ‘geomview’ shell script, which ‘00GL.m’ uses to invoke Geomview, needs to be
able to find the geomview executable file (called ‘gvx’). The Geomview installation
procedure should have been taken care of this, but if your Mathematica session doesn’t
seem to be able to invoke Geomview, it’s worth double-checking that the settings in
the ‘geomview’ script are correct.

Chapter 10: Installation 120

10 Installation

What you do to install Geomview depends on which kind of computer you have and on
whether you have the source distribution or the binary distribution.

In general, if you don’t care about looking at Geomview’s source code, you should get
one of the binary distribution. The binary installation is much easier and quicker than
compiling and installing the source code.

10.1 Installing the Unix Binary Distribution

If you have just obtained a copy of the binary distribution for a Unix system (Linux,
SGI, Solaris, HP, etc), you should be able to run Geomview and make use of most of its
features immediately after unpacking it by cd’ing to the directory that it is in and typing
geomview.

In order to fully install Geomview so that you can run it from any directory and use
all of its features, follow the steps in this section. In particular, you must go through this
installation procedure in order to use Geomview to display Mathematica graphics.

Geomview is distributed in a directory that contains various files and subdirectories that
Geomview needs at run-time, such as data files and external modules. It also contains
other things distributed with Geomview, such as documentation and (in the soure-code
distribution) source-code. We refer to the root directory of this tree as the ‘$GEOMROOT’
directory. This is the directory called ‘Geomview’ that is created when you unpack the
distribution file.

To install Geomview on your system, arrange for the ‘$§GEOMRO0T’ directory to be in a
permanent place. Then, in a shell window, cd to that directory and type install. This
runs a shell script which does the installation after asking you several questions about where
you want to install the various components of Geomview.

After running the install script you should now be able to run Geomview from any
directory on your system. (You may need to give the rehash command in any shells on
your computer that were started up before you did the installation.)

The ‘install’ script puts copies of the files in ‘$GEOMROOT/bin/<CPU>’ and
‘$GEOMRO0T/man’ into the directories you specified for executables and man pages, re-
spectively. Once you have done the installation you can cut down one the disk space
required by Geomview by removing some files from these directories, since copies have been
installed elsewhere. You should first test that your installed Geomview works properly
because once you remove these files from their distribution directories you will not be able
to do the installation again.

In particular, the files you can remove are
‘$GEOMRO0T/bin/<MACHTYPE>’:
(where ‘<MACHTYPE>’ is the type of system you are on, e.g. ‘linux’, ‘sgi’,

‘hpux’, etc). Remove all files from here except ‘gvx’, which is the geomview
executable file. DO NOT REMOVE ‘gvx’. It is not installed elsewhere.

‘$GEOMRO0T/man’:
You can remove all the files in this directory.

Chapter 10: Installation 121

10.1.1 Details of the Unix Binary Installation

The install script should be self-explanatory; just run it and answer the questions.
This section gives some details for system administrators and other users who may want to
know more about the installation.

The installation is actually done by make; the install script queries the user for the
settings of the following make variables and then invokes make install.

GEOMROOT: the absolute pathname of the Geomview root directory. The geomview shell
script, which is what users invoke to run Geomview, uses this to set various
environment variables that Geomview needs. It is very important that this be
an absolute pathname — i.e. it should start with a ’/’.

BINDIR: a directory where executable files are installed. The geomview shell script goes
here, as well as various other auxiliary programs that can be used in conjunction
with geomview. This should be a directory that is on users’ ‘¢path’. These aux-
iliary programs are distributed in the ‘$GEOMROOT/bin/<MACHTYPE>’ directory;
if you specify this directory for BINDIR, they are left in that directory.

MANDIR: a directory where Unix manual pages are installed. These are distributed in the
‘$GEOMRO0T/man’ subdirectory; if you specify this directory for MANDIR, they are
left in that directory.

MMAPACKAGEDIR:

a directory where Mathematica packages are installed. This should be a direc-
tory that Mathematica searches for packages that it loads; you can see what
directories your Mathematica searches by looking at the value of the $Path vari-
able in a Mathematica session. The installation process will install some pack-
ages there which allow you to use Geomview to display Mathematica graphics.
These packages are distributed in the ‘$GEOMRO0T/mathematica’ subdirectory;
if you specify this directory for MMAPACKAGEDIR, or if you specify the empty
string for MMAPACKAGEDIR, the packages are left in that directory. For more
details about the way these Mathematica packages connect to Geomview, see
(undefined) [Package Installation], page (undefined).

10.2 Compiling and Installing the Source Code Distribution

The main reason to get the source code distribution is to look at and/or work with the
source code. If you are only concered with using Geomview it is better to get the binary
distribution. It takes anywhere from a few minutes to an hour or more to compile the entire
source distribution, depending on what kind of computer you have.

Let ‘$GEOMROOT’ denote the full pathname of the Geomview source code directory; this
is the directory called ‘Geomview’ that is created when you unpack the distribution. This
directory contains the Geomview source code as well as various other files and subdirectories
that Geomview needs when it runs.

Before doing any compilation you should edit the file ‘8GEOMRO0T/makefiles/mk.site.default’Jj
This file defines some make variables which specify your local configuration. This includes
the pathnames of the directories into which Geomview will be installed, and possibly some

Chapter 10: Installation 122

other settings as well. There are comments in the file telling you what to do. This file
is included by every Makefile in the source tree, so the settings you specify here are used
throughout the source.

If you will be compiling for multiple systems, you can do them all in the same directory
tree. By default the Makefiles are set up to put the objects files, libraries, and executables in
directories which depend on the type of computer, so the two architectures will not interfere
with each other. The Makefiles use a variable called CPU to determine the type of machine.
Before doing any compilation you must arrange for this variable to have a value. There are
two ways you can do this.

1.

If you will always be compiling Geomview on the same type of computer edit the
file ‘$GEOMRO0T/makefiles/Makedefs.global’ to set the CPU variable to one of the
values ‘linux’, ‘FreeBSD’, ‘sgi’, ‘hpux’, ‘hpux-gcc’, ‘solaris’, ‘sundos4’ (for Suns
with SunOS 4, not Solaris), ‘rs6000’, or ‘alpha’. If you're using a type of system not
in this list, make up a new value for CPU, and write a ‘mk.<CPU>’ file for it patterned
after the other ‘mk.*’ in the ‘makefiles’ subdirectory.

2. If you will be compiling on more than one type of computer you can set a shell envi-
ronment variable named CPU to one of the values above and the Makefiles will inherit
the value from the environment.

Note that many of the Makefiles refer to a variable called MACHTYPE; this variable tells which
type of graphics system to compile Geomview for. The ‘mk .<CPU>’ files set this variable for
you; in most cases its value is ‘x11’, which specifies that Geomview should be compiled for
X windows.

Once you have configured your source tree by editing the files as described above and
setting the CPU variable, you can compile and install Geomview by typing make install
in the ‘$GEOMROOT’ directory. You can also type make all, or equivalently just make, to
compile without installing, and then type make install later to install.

You can use these same make comands in any subdirectory in the tree to recompile
and/or install a part of Geomview or a module.

If you want to modify the complier flags used during compilation, edit the file
‘$GEOMRO0T/makefiles/Makedefs.global’; the COPTS variable specifies the flags passed
to the C compiler (cc).

Getting Technical Support for Geomview 123

Getting Technical Support for Geomview

There are several ways to get support for Geomview.

1. Visit the Geomview web site, www.geomview.org. It contains the latest documentation,
news about development, and FAQ (Frequently Asked Questions) list.

2. Send email to the geomview-users@geomview.org mailing list. This is a mailing list for
discussing any issues related to using Geomview; to be added to the list send a note to
geomview-users-request@geomview.org.

3. Contract with Geometry Technologies for support. Geometry Technologies is a contract
support and programming company that emerged from the Geometry Center, where
Geomview was written. For more information, send email to info@geomtech.com, or
visit the Geometry Technologies web site at www.geomtech.com.

Function Index 124

Function Index

(Index is nonexistent)

Table of Contents

Introduction to Geomviewcooveeeeeees 2

Distribution, 3

GNU GENERAL PUBLIC LICENSE 4

Preamble. 4
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATIONottt 5

How to Apply These Terms to Your New Programs............. 9

History of Geomview’s Development 11

AUthOrS . . 11

How to Pronounce 'Geomview’ 12

Let Us Hear From You....................... 13

1 OVervieW.......ieiioeeeeeaannseesnnnnnnas 15

2 Tutorial.............ciiiiiiiiininnnnans 16

3 Interactionccciiiiineennnnnnn. 22

3.1 Starting Geomviewciiiiiii 22

3.2 Command Line Options 22

3.3 Basic Interaction: The Main Panel 23

3.4 Loading Objects Into Geomview 25

3.5 Using the Mouse to Manipulate Objects.................. 27

3.5.1 Selecting a Point of Interest 30

3.6 Changing the Way Things Look 31

3.6.1 The Appearance Panel......................... 32

3.6.2 The Materials Panel 34

3.6.3 The Lighting Panel 35

3.7 CamMeraS. ..ottt e e 36

3.8 Saving your work............ ... 39

3.9 The Commands Panel.................................. 41

3.10 Keyboard Shortcuts 42

4 OOGLFileFormats........covveieeenen... 47

4.1 Conventionsuee et 47
4.1.1 Syntax Common to All OOGL File Formats 47
412 FileNames....... ..ot 47
4.1.3 Vertices..... ..o 47
4.1.4 Surface normal directions 48
4.1.5 Transformation matrices 48
4.1.6 Binary format............ 49
4.1.7 Embedded objects and external-object references
.. 49
4.1.8 Appearancesiiiiiiia 50
4.1.9 Texture Mapping...........c.cviiiiiiia... 53
4.2 Object File Formats, 55
4.2.1 QUAD: collection of quadrilaterals.............. 55
4.2.2 MESH: rectangularly-connected mesh 55
4.2.3 Bezier Surfaces........... i 56
424 OFF Files.o 58
425 VECTFiles......ooooiiiiiiiii . 60
426 SKELFiles...... 61
4277 SPHEREFilescooiiiii .. 61
428 INSTFiles ... e 62
4281 INST Examples....................... 63
429 LISTFilesooioii i 64
4210 TLISTFiles. 64
4211 GROUPFiles......ccoiiiiniiiiiiiaaaa... 65
4212 DISCGRPFiles........cooiiiiiei .. 65
4.2.13 COMMENT Objects.......cccvviriineneaa... 65
4.3 Non-geometric objects.................... 66
4.3.1 Transform Objects............................. 66
4.3.2 CAIETAS. ..ottt et e 67
433 WIndow ...t 69
5 Customization: ‘.geomview’ files............ 71
6 External Modules......................... 72
6.1 How External Modules Interface with Geomview.......... 72
6.2 Example 1: Simple External Module..................... 72
6.3 Example 2: Simple External Module with FORMS Control
Panel 76
6.4 The FORMS Libraryoooiiiiiiiiiiii .. 80
6.5 Example 3: External Module with Bi-Directional
Communication. i 80
6.6 Example 4: Simple Tcl/Tk Module Demonstrating Picking
... 89
6.7 Module Installation 92
6.7.1 Private Module Installation..................... 92

6.7.2 System Module Installation..................... 93

7 gcl: the Geomview Command Language.... 94

7.1 Conventions Used In Describing Argument Types......... 94
7.2 Gcl Reference Guide. ... 96
8 Non-Euclidean Geometry 112

9 Mathematica Graphics in Geomview or
RenderMancivvvvveennee.. 113

9.1 Using Mathematica to generate OOGL files 113
9.2 Using Geomview as Mathematica’s Default 3D Display ... 114
9.3 Using Mathematica to generate RenderMan files......... 115
9.4 Using Geomview and Mathematica on Different Computers
.. 116
9.4.1 Using a Networked Geomview Host 116
9.4.2 Transporting Mathematica Files to Geomview by
Hand ... 117
9.5 Details of the Mathematica->Geomview Package......... 118
9.6 Installing the Mathematica Packages.................... 118
10 Installation............................. 120
10.1 Installing the Unix Binary Distribution 120
10.1.1 Details of the Unix Binary Installation 121

10.2 Compiling and Installing the Source Code Distribution.. 121

Getting Technical Support for Geomview..... 123

FunctionIndexcoviviierieennnas. 124

iii

