Mecánica

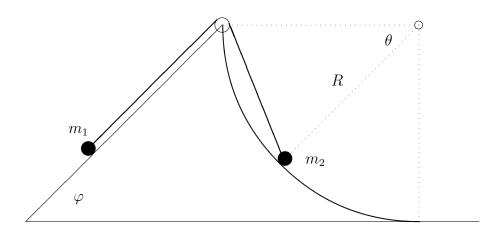
EXAMEN FINAL EXTRAORDINARIO (16 de Septiembre de 1994)

Apellidos	Nombre	N . o	Grupo

Ejercicio 5.º Tiempo: 45 min.

Se considera el sistema representado en la figura. En él, la masa m_1 se mueve sobre el plano inclinado con un coeficiente de rozamiento μ , mientras que la masa m_2 , que se considera puntual, está unida al carril circunferencial mendiante un vínculo liso. Las masas de la polea y del hilo inextensible que une m_1 y m_2 se consideran despreciables.

Se pide determinar, por aplicación del Principio de los Trabajos Virtuales, el valor de μ necesario para asegurar el equilibrio en función de la posición de m_2 , considerando asimismo todos los posibles valores de m_1 y m_2 .



Se trata de un sistema con 1 grado de libertad, descrito mediante la coordenada generalizada θ . Aplicamos el principio de los trabajos virtuales, $\sum_{i} \mathbf{F}_{i} \cdot \delta \mathbf{x}_{i} = 0$.

Denominamos l a la distancia sobre el plano inclinado de m_1 respecto de la polea. Está relacionada con θ mediante

$$l = l_0 - \sqrt{R^2(1 - \cos\theta)^2 + R^2 \sin^2\theta} = l_0 - R\sqrt{2(1 - \cos\theta)},$$

donde l_0 es la longitud del hilo. Tomando un incremento infinitesimal se tiene

$$\delta l = -\frac{R \sin \theta}{\sqrt{2(1 - \cos \theta)}} \delta \theta.$$

Planteamos el P.T.V. para un desplazamiento virtual $\delta\theta$. Si el deslizamiento de m_1 es hacia arriba del plano inclinado, el rozamiento tendrá signo descendente, de la misma forma que el peso de m_1 ; por otra parte, en el límite de deslizamiento el rozamiento vale $\mu N = \mu m_1 g \cos \varphi$. Así,

$$-m_1 g(\sin \varphi + \mu \cos \varphi) \frac{R \sin \theta}{\sqrt{2(1-\cos \theta)}} \delta \theta + m_2 g \cos \theta R \delta \theta = 0$$

De donde, considerando que $\delta\theta$ es arbitrario y despejando μ , se obtiene:

$$\mu = \frac{m_2 \sqrt{2(1 - \cos \theta)} - m_1 \sin \varphi \tan \theta}{m_1 \cos \varphi \tan \theta}$$
(1)

Igualmente podemos hacer la hipótesis de que m_1 desciende por el plano inclinado; esto sucederá cuando se verifique

$$m_2\sqrt{2(1-\cos\theta)} < m_1\sin\varphi\tan\theta,$$

en cuyo caso cambia el signo del rozamiento y por tanto del trabajo virtual del mismo:

$$-m_1 g(\sin \varphi - \mu \cos \varphi) \frac{R \sin \theta}{\sqrt{2(1 - \cos \theta)}} \delta \theta + m_2 g \cos \theta R \delta \theta = 0,$$

y despejando μ para $\delta\theta$ arbitrario se obtiene

$$\mu = \frac{-m_2\sqrt{2(1-\cos\theta)} + m_1\sin\varphi\tan\theta}{m_1\cos\varphi\tan\theta}$$
(2)

Es decir, el mismo resultado que la ecuación (1) pero con signo cambiado, de forma que el valor de μ resulta siempre positivo.