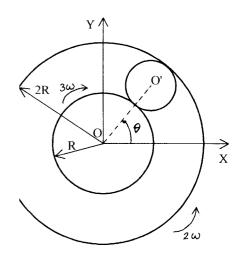
- **21.** El rodillo de radio $\frac{R}{2}$ y centro O' de la figura engrana con los cilindros de radio R y 2R con centro en O que giran con velocidades angulares constantes 3ω y 2ω respectivamente, con los sentidos indicados en la figura. Se pide:
 - 1. Calcular la velocidad de rotación del rodillo, velocidad absoluta de su centro O' y posición angular θ en función del tiempo.
 - 2. Determinar la posición del c.i.r. y las polares del movimiento del rodillo.
 - 3. Calcular la velocidad de sucesión del c.i.r. del rodillo.

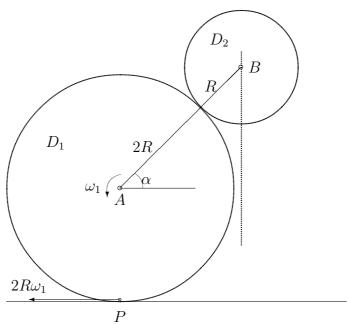
(Ejercicio 19, Curso 95/96)


22. Consideremos un plano fijo referido a un sistema de ejes Ox_1y_1 cartesiano y ortogonal. Sobre este plano se encuentra trazada la circunferencia C de centro (a,0) radio a.

Sobre un plano móvil hay trazada una recta r, y un segmento AM de longitud a, ortogonal a r, ambos solidarios con dicho plano.

El movimiento se encuentra definido por la condición de que A describa con velocidad constante circunferencia de centro O y radio a, mientras que r se encuentra en todo momento tangente a C.

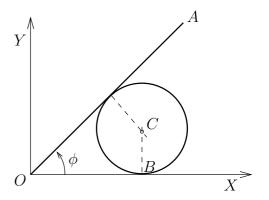
Se pide:


- 1. Posición del centro instantáneo de rotación
- 2. Velocidad de rotación del plano
- 3. Velocidad de deslizamiento de r sobre C en función del ángulo θ
- 4. Base y ruleta del movimiento
- **23.** Una barra AB de longitud 3R está articulada en sus extremos a los centros de dos discos D_1 y D_2 de radios 2R y R, respectivamente. La barra y los discos se mueven en un plano vertical.

El disco D_1 rueda y desliza sobre un plano horizontal con velocidad angular constante ω_1 y velocidad de deslizamiento del punto de contacto con el plano horizontal P igual a $2R\omega_1$. El disco D_2 rueda sin deslizar sobre el disco D_1 , describiendo su centro una recta vertical.

Se pide:

- 1. Velocidad angular de la barra AB.
- 2. Velocidad del extremo B de la barra.
- 3. Aceleración angular de la barra AB.
- 4. Aceleración del punto B de la barra AB.
- 5. Velocidad angular del disco D_2

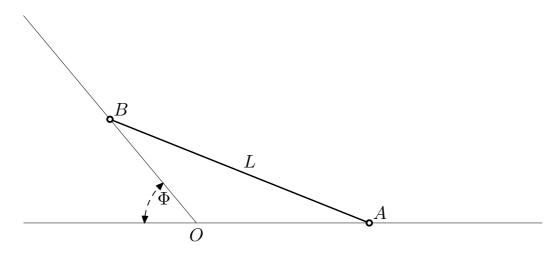


(Ejercicio 23, Curso 94/95)

24. En el mecanismo plano de la figura, la barra OA gira alrededor del punto fijo O con velocidad angular $\dot{\phi}=$ cte. Un disco de radio R se mueve de forma que desliza sobre el eje X a la vez que rueda sin deslizar sobre la barra OA.

Se pide:

- 1. Velocidad y aceleración angular del disco.
- 2. Velocidad y aceleración del centro C del disco.



- 3. Ecuación de la polar fija referida a OXY.
- 4. Velocidad y aceleración del punto B cuando la barra forma 60° con la horizontal.

(Ejercicio 23, Curso 00/01)

- **25.** De la barra de la figura en la posición tal que OA = OB, se conocen los valores de v_A y a_A . Se pide:
 - 1. Obtener los valores de Ω y $\dot{\Omega}$ de la barra.
 - 2. Razonar cuál es el punto más lento del plano móvil y cuál es el más lento de la barra.

La longitud de la barra es L.

(Ejercicio 22, Curso 99/00)