NUMERICAL MODELLING IN LARGE STRAIN PLASTICITY

WITH APPLICATION TO TUBE COLLAPSE ANALYSIS

By

JOSE: M. GOICOLEA RUIGOMEZ
Ing. Caminos

A Thesis submitted for the degree of
Doctor of Philosophy

In the Faculty of Engineering of the
University of London

King's College London

October 1985



ABSTRACT

Numerical methods are proposed for the analysis of 2 or 3-
dimensional large strain plasticity problems. A Finite Difference
program, with 2-dimensional continuum elements and explicit time
integration, has been developed and appiied to model the axisymmetric

crumpling of circular tubes.

New types of WﬂlﬁﬂijiUEEEEES (Triangles-Quadrilaterals for 2-D,
Tetrahedra-8ricks for 3-D) are proposed for the spatial
discretization. These elements model accurately incompressible plastic
flow, without unwanted "zero-energy" deformation modes or tangling
over of the mesh. Elastic-plastic, rate dependent laws are modelled
with a "radial return" algorithm. The transmission of heat generated
by plastic work and material dependence on temperature are also
incTuded, enabling a fully coupled thermo-mechanical analysis.

A 2-D and axisymmetric computer program has been developed,
implementing the numerical techniques described. Computational
efficiency was essential, as large scale, costly applications were
intended. An important part of the program was the contact algorithm,
enabling the modelling of interaction between surfaces.

The axisymmetric crumpling of tubes under axial compression
("concertina" mode) has been analyzed Numerically. Quasi-static
experiments on Aluminium tubes weré modelled, using velocity scaling.
Very large strains are developed in the crumpling process; with the
help of tension tests, material laws valid for such strain ranges were
developed. Good agreement was obtained between numerical predictions
and experimental results. Modelling choices such as mesh refinement,
element type and velocity scaling were studied, and found to have an
important influence on the numerical predictions. Finally, a large
scale impact analysis of a steel tube at 176m/s was performed. The
results compared well with experiment, indicating differences with the

behaviour of low velocity crumpling mechanisms.

To conclude, Finite Difference procedures with explicit time-



marching techniques are proposed for large strain plasticity problems,
at low or medium impact velocities. A fairly robust code has been
developed and applied successfully to a range of large strain and tube

crumpling problems.
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BASIC NOTATION

A Area; Mass damping coefficient (eqn. 4.56)
B8 Stiffness damping coefficient (eqn. 4.56); strain-rate

parameter (egn. 4.50)

B (Bij) Left Cauchy-Green deformation tensor (egn. 2.12)

Big Gradient operator for Finite Elements (eqn. 3.6)

o Stress wave velocity

C (Cijkl) Constitutive tensor for Jaumann rate of Cauchy stress (egn.

3.23)
C (C;y) Right Cauchy-Green tensor (eqn. 2.12)
C Damping matrix (egn. 3.30) ,
E.(Cijkl) Constitutive tensor for Truesdeil rate of Cauchy stress
(sect. 3.5.2)
CST Constant strain elements

d (dij) Rate of deformation tensor (eqn. 2.15)
d (d;) Penetration in contact (eqn. 4.68)

D (DIJKL) Constitutive tensor (total Lagrangian) (egns. 2.47, 3.21)
D Diameter

E Young's modulus of Elasticity

E (E;;) Green's strain tensor (eqn. 2.17)

F Force; Yield function (egn. 2.54)

F (FIJ) Deformation gradient tensor (eqn. 2.7)
FD Finite Difference (method)

FE Finite Element (method)

G Elastic shear modulus (eqn. 2.45)

g (9ij) Metric tensor (eqn. 2.2)
h,ha,hY,h'Height; Plastic hardening moduli (eqns. 4.44, 4.45)
h (hy) Heat flow rate (egn. 2.32)

I Identity tensor

ID Inner diameter

J Jacobian of motion (eqn. 2.10)

K,K Stiffness, stiffness matrix (eqns. 3.10, 3.11)
L Length

1 (]1j) Velocity gradients (eqn. 2.14)

m,M,m,M  Mass, mass matrices (eqn. 3.8)

MD Mixed Discretization (sect. 4.2.2)

MTB(C) Mixed Tetrahedra-Brick (Corrected) elements



MTQ(C) Mixed Triangles-Quadrilateral (Corrected) elements

N,n Normal vectors

n Time instant corresponding to n t

N Shape functions for FE (egn. 3.5)

0D Quter Diameter

P Internal forces

q Body heat supply

r,R Radius; External force (egn. 3.8)

R (Rjj) Rotation tensor (egn. 2.11)

S,s Surface; Distance along a curve

S (S1y) 2nd Piola-Kirchhoff stress tensor (eqn. 2.25)
s (Sij) Cauchy deviatoric stresses (egn. 2.59)
t Time; Thickness

T Temperature

u Internal energy

u (uj) Displacements

U (Upy) Right stretch tensor (egqn. 2.11)

v Volume

] (Vij) Left stretch tensor (egn. 2.11)

vi,v (vy) Velocity (egn. 2.6)

W Spin tensor (eqn. 2.15)
W Work, Energy
X

(x,¥,z) Spatial coordinates (eqn. 2.5)
X Particle (sect. 2.2.1)
X (XI) Lagrangian coordinates (eqn. 2.4)
X Vector product (egn. 2.30)
Y Yield stress
o Thermal expansion coefficient; Back stress (eqn. 2.61);
Mixed Discretization correction coefficient (egn. 4.19)

5 Proportion of critical damping; Radial return coefficient
(eqn. 4.32)

Y Plastic flow arbitrary multiplier (egn. 2.55)

A Increment

51j Kronecker delta

P Effective plastic strain (eqn. 2.60b)

e(eij) Small strain tensor (eqn. 2.43)

A Lame's Elastic constant

i Coefficient of Coulomb friction (egn. 7.11)



QL Q DO =

Pp Dy x

Poisson's ratio

Mass density; Radius of curvature

Angular coordinate

Cauchy stress tensor (eqn. 2.24)

Partial derivative

Pull-back, push-forward of tensors (egns. 2.21, 2.22)
Mesh coordinates (sect. 3.4)

Angular frequency

12
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1.1 OBJECTIVES

This work consiéts of a theoretical part (mathematical and
numerical models, chapters 2-4), and a practical part (applications

and numerical simulation of large strain tube collapse analysis,

chapters 5-7).

The motivation for the theoretical part of the work lies in the
author's interest in non-linear solid mechanics modelling, understood

broadly as encompassing the following phenomena:

- large strains and large displacements (geometric nonlinearities);
- plastic and viscoplastic behaviour (material nonlinearities);

- contacts and impact (nonlinear boundary conditions);

- thermomechanical coupling.

On the practical side, the source of motivation was the research
program on tube collapse mechanisms being carried out at the Civil
Engineering department of King's College, University of London
(Andrews, England and Ghani, 1983). Such mechanisms are efficient
energy dissipating systems (Johnson and Reid, 1978), for use in impact
situations. Additionally, tubes are frequent structural components for
aerospace vehicles and other equipment or components which may suffer

accidental collisions.

The objective of this work was the development of numerical
methods of simulation for nonlinear analysis, capable of modelling
tube collapse mechanisms. More specifically, the attention was
régz:nggg‘EgﬁngT;E;g*ihrough axisymmetric sequential folding
(Concertina mode). Humerical predictions for tube collapse should be
obtained and compared to experimental results, available from previous
work on aluminium tubes by Ghani (1982). This objective posed some
important challenges, such as the development of a numerical model for
large strains and Targe displacements, with elastic-plastic behaviour,
capable of modelling arbitrary tube-tube and tube-platen contacts
(chapters 2, 3, 4). Reliable data would have to be obtained for the

14



I

TIME = 2.09 ms

Figure 1.1

TIME = 2.93 ms TIME

3.62 ms

TYPICAL RESULTS FOR AXISYMMETRIC TUBE COLLAPSE ANALYSIS

0D=38.1mm, t,=1.22mm,L=88.%mm - TUBE?., CEOMETRY F

(SEE TABLE 7.4)
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constitutive behaviour of the Aluminium at large strains (chapter 6).

With this objective in mind, a Finite Difference method with
explicit time integration was chosen. The method uses a Finite Element
topology, and can therefore be applied to irregular meshes in
arbitrary continua. An efficient contact logic was essential for the
success of the simulations. A typical example of the results obtained

is shown in figure 1.1.

1.2 NON-LINEAR MODELLING

Within the past decade there has been considerable interest in
nonlinear solid mechanics simulations, due to the great problem-
solving power available from the new generations of digital computers.
The possibility of detailed solutions for highly complex non-iinear
problems has occassioned renewed interest and pressure for powerful
mathematical descriptions and numerical techniques which implement

them efficiently.

In many aspects of non-linear numerical modelling, choices are
available: explicit or implicit time integration, LlLagrangian or
Eulerian meshes, total Lagrangian or Cauchy stress formulations. Each
of these choices has its own advantages and drawbacks. On the other
hand, non-linear mechanics is a field under constant development, and
new approaches are being explored which attempt to combine efficiently
the advantages of different techniques (e.g. Element By Element
method, Arbitrary Lagrangian Eulerian descriptions).

The procedure chosen for this work (Explicit Finite Uifference)
is ideally suited for steeply non-linear, short duration transient
phenomena (wave propagation type problems). A natural application is
for impact scenarios, e.g. the missile impact tests done at UKAEA
Winfrith reported by Barr (1983a) (sect. 7.4). Explicit Finite
Difference techniques are also useful for slow loading phenomena, in
order to take advantage of the non-linear robustness and capabilities,
through the use of velocity scaling or dynamic relaxation (chapters 4,
6, 7).

16



1.3 LAYOUT

In chapter 2 a number of essential solid mechanics concepts are
introduced and discussed briefly. Non-linear numerical models and
techniques to implement those concepts into numerical codes are
reviewed in chapter 3. The Explicit Finite Difference model and
computer code developed here are described in chapter 4, while chapter
5 contains some validation examples which test the main aspects of the
formulation. Chapter 6 concerns the derivation of a material
constitutive law for Aluminium alloy through tensile tests, with some
applications to the numerical simulation of the tensile tests
themselves. Chapter 7 contains applications to tube collapse analysis,
comparing the results with experimental data for quasi-static collapse
of Aluminium tubes. The constitutive Taw from chapter 6 is used for
the numerical predictions. An analysis for a medium velocity (176 m/s)
tube impact is also described. Finally, conclusions and some

suggestions for further work are given in chapter 8.

17
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2.1 INTRODUCTION

The advances made 1in digital computing within the last decades
have opened up new fields for engineers and scientists. Problems
previously regarded as unsolvable, only approached through experiments
and simplified empirical formulae, can now be analyzed numerically in
great detail. In the field of continuum mechanics this has greatly
increased the interest in detailed mathematical descriptions, amenable
to be used in numerical models with discretization techniques (e.q.

Finite Element or Finite Difference methods).

Having said this, there still exists a certain degree of
confusion in the specialist literature. On the part of the
mathematicians, rigorous mechanical descriptions are often presented
in ways difficult to be grasped by engineers and implemented in
numerical production codes. As a result, many engineers still cling on
to outdated and much less powerful notations. On the other hand,
theoretical presentations are not unique, causing some degree of

confusion to researchers first approaching seriously these topics.

An effort has been made in this chapter to present a brief
overview of certain continuum mechanics concepts, indispensable in a
rigorous treatment, without unnecessary mathematical fuss. The purpose

of this exposition is:

- to introduce the nomenclature and definitions of concepts used in

later chapters;

- to discuss the significance of and interpret some concepts with a
view to numerical modelling (basis of this work);

- to ensure certain completeness for the ideas presented in this

thesis.

It must be stressed, however, that this exposition does not
pretend to be complete. Only the concepts which are relevant for the
rest of this thesis will be dwelt upon. In particular, emphasis is
laid on solid mechanics and elastic-plastic behaviour. A number of
results will be presented without proof. For a more complete
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20

discussion of these topics, the interested reader is referred to Fung
(1965), Malvern (1969), and Billington and Tate (1981) for the general
concepts, and to Marsden and Hughes (1983) for a more detailed

and up-to-date mathematical description.

In the following presentation, the ambient space is assumed to be
an Euclidean point space (i.e. interior product defined), and where
necessary this will be particularized to R3. The coordinate bases may
be curvilinear and arbitrary, although when equations are given in
component form, often orthonormal bases (not necessarily cartesian)
are assumed for simplicity. The usual conventions for tensor notation
are employed: repeated indices indicate summation over their range
unless explicitly stated, and commas indicate covariant derivatives.
Vectors and tensors are represented by boldface characters. Superposed

dots indicate material time derivatives.

Given two tensors A and B the product AB is understood to be

contracting the near indices with opposite variance:
(AB)TJ = aTky, J (2.1)

If the indices have the same variance, e.g. both are contravariant,

the metric tensor g is necessary to lower one:
(AB)1J = aTKg ,81d = plkg J (2.2)

When the tensor components are referred to orthonormal bases the
vertical position of the indices is irrelevant, as the metric tensor

is unity.
A colon indicates doubly contracted product:

A:B = AijBij (2.3)

2.2 KINEMATICS

A body (or continuum) is a set whose elements, called material

particles, have a one-to-one correspondence with a region V of the



Euclidean point space. The following kinematics concepts are intended
to provide a descriptioh of the motion of deformable bodies.

2.2.1 CONFIGURATIONS

Each particle X of the body B may be identified by its position X
in the original configuration, Voo which is taken as reference:

X = k(X) (2.4)

X (components Xl) are called Material or Lagrangian coordinates of the
particle. The motion of the body at a later time is given by the time-
dependentpositions x of the particles in the currentconfiguration,
Ve

x = x(X,t) (2.5)
x (components x1) are the spatial or Eulerian coordinates. Hereafter

upper case indices shall refer to Lagrangian coordinates, and lower

case to tulerian. The velocities are defined as
vV = X (2.6)

where the dot signifies a material time derivative, i.e. following the

particle X.

2.2.2 DEFORMATION TENSORS

Central to deformation measurements is the deformation gradient

tensor:
F = dx/0X (2.7)
with components Fil =X g

The tensor F is used as the base for a number of strain and

deformation measures. An element of a curve dX is transformed by

21



dx = FdX. The inverse of F gives the spatial gradients of the material

coordinates:
Frl = 9x/9x
CEhh=xt )

F constitutes a two-point tensor. Another interpretation that relates

F to transformations between configurations is given in section 2.2.5.

The Jacobian of the motion is

det (F) (2.10)

.
]

The polar decomposition of F gives

F=RU=VW (2.11)

where R is an orthogonal (rotation) tensor, RRT I. U and V are
positive definite, and are callied the right and left stretch tensors
respectively. Equations (2.11) represent two ways to visualize the
deformation: first stretching (U) and then rotating (R), or first

rotating (R) and then stretching (V)
Other deformation measures are the Cauchy-Green tensors:

C = FTF (right Cauchy-Green)
(2.12)

B = FF! (left Cauchy-Green)

The length of an element of curve is given by ds2 = dxdx in the
current configuration, and dS2 = dXdX in the original configuration.
The significance of €C and B8 is given by the relations

dsZ = dXCdX

i

(2.13)

dS2 = dxB-ldx

i

22



2.2.3 DEFORMATION AND SPIN RATES
The spatial velocity gradient tensor is defined as:

1 = gv/0x (2.14)

which can be decomposed into symmetric and skew-symmetric parts:

(1+1T)/2

=%
]

(2.15)
(1-11)/2

X
]

These are called the rate of deformation (or velocity strain) and spin
rate tensors respectively. The rate of change of length of an element

of curve is given by

dS = (dxddx)/ds (2.16)

2.2.4 STRAINS

A measure of the total strain is given by the Green strain

tensor, defined as

E=(C-1)/2 (2.17)
where 1 is the Identity tensor. It is trivial to see that

ds2-dS2 = 2dXEdX (2.18)
and that the rate of E is given by

£ = FTdF (2.19)
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2.2.5 TRANSFORMATIONS

For the tensors defined above, some of the indices refer to the
original configuration (upper case), while others are related to the
current configuration (lower case). Here some transformation laws are

given to find the corresponding tensor in the alternative

configuration.

Although the transformed tensors will be considered as different
tensorial entities, one way to visualize the transformation is as a
mere change of base. Imagine a base (0,e;) fixed in space throughout

the motion, and another base (0'(t),e'j(t)) which deforms and
translates with the body. In this convected curvilinear base, the

coordinates of a material point remain constant throughout the motion,
and equal to the material coordinates, XI. The spatial components of F
provide the matrix for the change of coordinates between the two
bases. Given a 2nd order contravariant tensor a by its convected

material components, alJ, the spatial components are

ald = (3x1/9x1)(3xI/ax?)aly (2.20)
Hence F provides a means for transforming between spatial and material
coordinates. alJ and alJ are the components in different bases of the

same tensor, a. If now one assumes components alJ to apply to the

spatial basis, a new tensor is obtained:
A=alY e ne, (2.21a)

where g signifies a tensorial product. A is called the pull-back of a,

and may be obtained as

A= FlaF T = pfa) (2.21b)
while the push-forward is defined by the inverse relation:

a = Py «(A) = FAFT (2.22)

Ihese relations may be trivially generalized to tensors of any rank.

24



Elements of area and volume 1in reference and current
configurations are transformed by the following transport formulae:

nda = JFTNdA (2.23a)
dv = Jdv (2.23b)

These relations may be used to express integral balance laws (sect.
2.4) in either configuration. Egn. (2.23a) conditions the form of the

Piola transformations for the stress tensor (egn. 2.25)

2.3 STRESS

2.3.1 CAUCHY

The concept of stress rests upon the Cauchy postulate that the
action of the rest of the material upon any volume element of it is of
the same form as distributed surface forces. A traction vector t(n)
may be defined at each point, as the force exerted per unit

infinitesimal area, for each orientation n.

Applying equilibrium considerations, it may be deduced that a
stress tensor g must exist, such that for every orientation n

t(n) =ngo (2.24)

gis called the Cauchy or true stress tensor, and it is related

to the current configuration.

2.3.2 PIOLA-~KIRCHHOFF

[f both the force and the area components of the concept of
stress are transformed back into the original configuration, a new

stress tensor is obtained:

S=JF o Ft =09, (0) (2.25)
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This relation is called the backward Piola transformation. It defines
the 2nd Piola-Kirchhoff stress tensor S, which is a stress measure

referred to the original configuration.

2.4 BALANCE LAWS

Balance laws {(mass, momentum, angular momentum, and energy) may

be stated alternatively in integral form or as field equations.

Integral forms provide "weaker" expressions for the same principles,

This will be commented further in section 4.3.

2.4.1 BALANCE OF MASS

Conservation of mass implies that the mass of the material
ocupying a certain region V of the body remains constant throughout

the motion:
(d/dt{]rpdv =0 (2.26)
v
where p 1is the mass density.

As a field equation, balance of mass is expressed by the

continuity equation:

P+ pdiv(v) =0 (2.27)

2.4.2 BALANCE OF MOMENTUM

For a region V of the body with boundary S, the integral form of
the equation of linear momentum balance is

(d/dt)f pvdV =f pfdv +j no ds (2.28)

v v S

where f is the body force per unit mass. The corresponding
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differential expression is Cauchy's equation of motion,
pv = div(o) + pf (2.29)

The integrals in eqn. (2.28) involve vectors, and as pointed out
by Marsden and Hughes (1978), may not provide a covariant statement of
the momentum balance principle in a general manifold. However, for the
Euclidean space to which this exposition refers, the objection is not
relevant. The integral expression is better suited for finite
difference numerical models (section 4.3), for which weak variational

global expressions (as employed in Finite Elements) are not obtained.

Taking moments in eqn. (2.28) with respect to the origin, the

balance of angular momentum is expressed by

(d/dt)fp(va)dV = fp(fo)dV + fo(n o )dS (2.30)
) ) S

where xXv denotes vector product of x and v. The corresponding field

equation states simply the symmetry of o:
o= o' (2.31)

Symmetry of S may be deduced from eqns. (2.25) and (2.31).

2.4.3 BALANCE OF ENERGY

In a continuum, the first law of thermodynamics may be expressed

(d/dt{jéudv =.jh(pq+-0:d)dv~+~/hnd5 (2.32)

v v S

as

where u is the internal energy per unit mass

q is the rate of body heat supply per unit mass
h is the heat flux vector; for an oriented infinitesimal area

the heat flow rate is given by H = hndS

The corresponding field equation 1is
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p& = g:d + pq + div(h) (2.33)
The term ¢:d represents the stress work per unit volume and
time. ¢ and d are said to be conjugate stress and strain measures. An
alternative representation of the energy balance principle involves

the use of S and E, also conjugate:

Poi = S:E + Poq + ﬁg div(h) (2.34)

2.5 CONSTITUTIVE RELATIONS

The balance laws provide a set of equations which are not
sufficient to determine the behaviour of a material body. Some further
equations are necessary, stating the relation between kinematic and

dynamic variables (constitutive equations).

Constitutive equations are based on judgement, a-priori knowledge
of how the material behaves. However, certain general principles must
be satisfied in their formulation. For our purpose, the most important
principle is that of objectivity, which states that constitutive
equations must be invariant under changes of reference frame, in order

to represent the material behaviour objectively.

For a homogeneous material it may be seen (Billington and Tate,
1981), that an objective relation between Cauchy stress and

deformation takes the form:
0 =R p(Ct(s),T (s)) R' (2.35)

where R is the rotation tensor (egn. 2.11) and T the temperature. The
notation Ct(s) signifies the history of C (eqn. 2.12) from - <s<t,
Note that in general the compliete history of the deformation C (or of
E equivalently, eqn. (2.17)) are required, while for R only the
instantaneous current value is used, for rotating the stresses.

The second Piola-Kirchhoff stress S is objective as such (being
related to a fixed reference configuration). In terms of it egn.
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(2.35) may be rephrased as
S = p(Ct(s),Tt(s)) (2.36)

The advantage of using the 2nd Piola-Kirchhoff stress tensor for total

formulations is evident (see also sect. 3.5.1).

Some types of Elastic and Plastic rate equations are discussed
below. For simplicity, attention is centred on the ijsothermal case.

2.5.1 RATE EQUATIONS

Materials without memory or with smooth memory may be described

with rate equations, e.g.
G = g(d, o ,F) (2.37)

where ¢ is a stress rate which is objective for rigid body rotations.
The choice of objective rate is not unique. A variety of options are
available, the two most widely used being the Jaumann rate

v -
0=0 + 0w+ wo (2.38)
and the Truesdell rate,

=6 - g1l -1+ gtr(1) (2.39)

Qo

In equation (2.37) i provides the constitutive part of the
stress increment. Eqns. (2.38) or (2.39) define the remaining terms
that must be added for objectivity. Formulations based on either
objective rate may be made equivalent by adjusting the constitutive
law, g. However, if g is postulated a-priori, independentiy of the
choice of objective rate, both formulations give rise to different

constitutive behaviour.

The need for special objective rates is avoided if the eguations

are formulated in a material setting, e.g.



$ = g(E,E,S) (2.40)

S is the material time rate of a tensor on the current configuration

(2nd Piola-Kirchhoff), which is already objective.

2.5.2 ELASTICITY

Elastic materials are those for which a natural, stress-free
state exists, to which the body returns upon removal of all external
forces. The stress depends on the deformation from this natural state:

S = f(C,t) (2.41)

A perfect memory of the natural state, with no memory of intermediate

states, is exhibited.

For linear elasticity and small strains the relation is as

follows:
O=Cc:€ (2.42)

UNJISRPS Iy k])

(in component form o K1 €

c is termed the elasticity tensor, and € is the small strain tensor:

€ig = g5 *u

1)/2 (2.43)

where u are displacements. For isotropic materials, and provided o

and € are both symmetric, ¢ must take the form
Cijk1 “AOij Oyy + 26 85, 04 (2.44)

where A and G are called Lame's constants. This gives rise to the

classic generalized Hooke's law:
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2.5.2.1 HYPERELASTIC MATERIALS

The concept of Hyperelasticity was introduced by Green and given
its present name by Truesdell (e.g. Truesdell and Toupin, 1960). It
postulates the existence of a strain-energy function from which the

stresses may be derived as
S= @ (W JE) (2.46)

Assuming the necessary differentiability, the elasticity tensor is

defined as

D= p (9% JE) (2.47)
and a rate equation may be written as

$ = D:E (2.48)
1KL)

(in component form Sld - DIJKLt

For a constant value of D, a Tinear hyperelastic total equation

is obtained:

S = D:E (2.49)

2.5.2.2 HYPOELASTIC MATERIALS

The term Hypoelastic, also introduced by Truesdell (Truesdell and
Toupin, 1960), characterizes a material for which the behaviour is
defined in the current configuration by an incrementally linear

relationship of the form:
[e]
0=c:d (2.50)
(in component form &1J = cijk]dk])

An objective stress rate must be used for eqn. (2.50) (see section



2.5.1).

Hypoelastic behaviour is very convenient for descriptions based
on the current configuration. Material data based on true stress -
natural strain relationships (see section 6.1) give rise naturally to

hypoelastic interpretations.

For isotropic materials egn. (2.50) takes the form
= Atr(d)I + 2Gd (2.51)

(in orthonormal components 81j = Adyy 855 + 2Gd;4)

2.5.3 PLASTICITY

For most solids, behaviour may be assumed elastic only within a
certain stress range. Beyond the elastic range yield occurs,
deformations being characterized by permanent changes occasioned by

slip or dislocations at the atomic level (Plastic flow).

After yield, tlastic and Plastic deformations are assumed to
happen concurrently (Elastic-Plastic materials). More restrictive
idealizations are provided by rigid-plastic models (only plastic

deformations). An additive decomposition of the rate of deformation is

assumed here:

d = d® + d° (2.52)

where superindices e and p indicate elastic and plastic components
respectively. Additive decomposition of strains in this fashion was
proposed by Hill (1950). Lee (1969) has proposed a multiplicative
decomposition of deformation gradients instead, F = FeFp, while Green
and Naghdi (1965) have advocated an additive decomposition of total
strain, E = E& + Ep.

Classical plasticity is formulated in terms of the current
configuration (Hill, 1950). Hence the popularity of an additive
decomposition of the rates of deformation, egn. (2.52), coupled with
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hypoelastic behaviour, for Elastic-Plastic material descriptions (e.g.
Wilkins (1964), Hibbit, Marcal and Rice (1970)). In this case

G = c:d® = c:(d-d”) (2.53)
The yield criterion determines the 1imit of the elastic range:
F(o,Q) =0 (2.54)

where Q is a set of plastic hardening parameters. For F<U the material
behaves elastically. Two additional sets of relations must be provided

to determine fully the stress-strain behaviour:

- Flow rule d’ = YR(o,Q) (2.55a)

- Hardening rule a = YH(o,Q) (2.55b)

where 7Y 1is an arbitrary multiplier, whose value is determined from
[o]

the simultaneous solution of egns. (2.54), (2.55). An objective rate Q
must be used in egn. (2.55b).

Drucker (1951) postulated a criterion for stable work-hardening
materials. This involves the work done by a set of self-equilibrating

forces, requiring:

g:d > 0 (2.56a)
o:dPy 0 (2.56Db)

The equal sign in (2.56b) holds for perfectly plastic materials (no
hardening). A consequence of Drucker's postulate is the associativity
of plastic flow: for a smooth part of the yield surface,

® = Y(3F/do) (2.57)

which in a nine-dimensional stress space may be interpreted as the

normality of dP to the surface F( ¢,Q).
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2.5.3.1 VON MISES MODEL

Particularly useful and simple models are derived from the yield

criterion of Von Mises (1913). This may be written as
F = (3/2)s:s - Y2 =20 (2.58)
where s are the deviatoric Cauchy stresses,
s=¢ - (1/3)tr(0)I1 (2.59a)
{in orthonormal components, Sij = %43 - (1/3) Tk 51j (2.59D)

Y is the yield strength of the material, which coincides with the
yield stress in uniaxial tension (see section 6.1). The Von Mises
yield condition is independent of volumetric stresses, which are

assumed to behave elastically.

An isotropic hardening model 1is obtained by making Y a function

of the effective plastic strain, ¢P:

Y = Y(eP) (2.60a)

with P = fd P = f [2/3)dP: P dt (2.600)

A more general hardening model, incorporating Bauschinger effect,
may be obtained by combining isotropic hardening with the kinematic
hardening proposed by Prager (1956) and Ziegler (1959), giving the

yield condition
F=(3/2)(s-):(s-a¢) - Y2 (2.61)

& is called the back-stress and represents a kinematic hardening
parameter (transiation of the Von Mises circle). The associative flow

rule is

@ = Y(s-a) (2.62)



and the hardening laws.

& = (2/3)h,dp (2.63a)
Y = hy ep (2.63b)
Imposing the consistency condition (ﬁ = 0) during loading, and
combining egns. (2.51), (2.53), (2.61)-(2.63), the stress-strain

relation is found to be
g =c:ld - (s-)(3/2)d:(s-a)/Y2(1+h'/3G) | (2.64)

where h' = hythy (plastic modulus). Purely isotropic hardening is
obtained with hy, =0, and purely kinematic with hy=(,

In a uniaxial test, law (2.64) will provide an Elastoplastic

hardening modulus of
h = 1/L1/& + 1/h'] (2.65)

where E = G(3A+2G)/( N+G) (Young's modulus of elasticity).

2.5.3.2 OTHER PLASTICITY MODELS

Plasticity in soils is generally considerably more complicated
than the above Von Mises model. Pressure dependent yield, anisotropy,
dilatation and non-associativity, hysteretic cyclic behaviour, pore
pressure, are important features for soil plasticity. An excellent
review of this topic has been given by Marti and Cundall (1980).

The mathematical theory of plasticity is a field still under
development. Very refined phenomenological models have been proposed
(e.g. Mroz (1967), Prevost (1978)). These models are based on
multiple-surface idealizations. They provide elaborate stress-strain
laws requiring considerable computational cost for numerical
modelling, thus in practice they are hardly used. This fact has been
acknowledged by Urtiz and Popov (1983), who propose simpler, one-

surface models for metal plasticity.
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Finally, a principle to be held present when choosing a
plasticity model, is that it can only be as reliable and as
sophisticated as the experimental information on which the
determination of the model parameters is based. For example, there is
little point in using anything other than a Von Mises isotropic
hardening model in a metal, if all the information available is a
uniaxial stress-strain law. Un the other hand, the added complication
of some models may not be necessary if the loading is mainly

monotonic.
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3.1 INTRODUCTION

The Governing equations in solid mechanics are the equations of
motion, which can be written in component form as

+p(f]-U1) =0 (3.1)

9ij2]
where 7ij is the Cauchy stress tensor, p the mass density, fj are body

forces per unit mass (typically gravity), and uj displacements. These
equations originate from the balance of momentum principle (section

2.4.2). This principle may be stated atternatively in integral form
(egn. 2.28).

The partial differential eqns. of motion (3.1) depend upon 3
space and 1 time variables., The numerical models described here
perform independent semidiscretizations in space and time. First egns.
(3.1) are discretized in space, yielding a system of ordinary
differential eqns. in time. These are then integrated with a time-

stepping procedure.

The discretization of the continuum may be achieved either with
Finite Element (FE) or Finite Difference (FD) methods. Both methods
have had separate historical developments, although some degree of
convergence has been reached lately in the Titerature (e.g.
Belytschko, 1983). The theoretical principles for both methods are
different: local truncation errors for FD, global error norms for FE.
However, FE methods are also based on independent shape functions for
each element. As a result, FE and FD formulations often produce

equivalent algorithms (e.g. Kunar and Minowa, 1981).

Other numerical methods need only a discretization in the
boundary: the Boundary Element Methods (BEM). These were first
proposed for solid mechanics by Rizzo (1967) and Cruse (1969).
Considerable advantage can be gained by the reduction and
simplification of the discretization. For nonlinear problems, however,
BEM lose much of their appeal. Volume integrals appear which require
an additional discretization of the continuum (e.g. Garcia, 1981). For

this reason BEM will not be reviewed here.
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Time integration may be performed either by modal analysis
methods or by direct‘integration (time-marching). Modal analysis
requires transformations into the frequency domain which are only
valid in a linear regime, for which reason they must be ruled out for
nonlinear models. As to time-marching procedures two main alternatives
exist, explicit or implicit methods. Both have advantages and
disadvantages, which will be reviewed briefly in this chapter. Recent
alternative procedures based on operator splitting methods will also

be considered.

3.2 FINITE DIFFERENCE METHODS

Finite Difference methods have been used for a long time by
engineers within relaxation procedures (e.g. Southwell, 1940). Finite
Difference operators provide local approximations for a system of
coupled differential equations. Due to this fact, a one-step global
solution 1is not possible and recourse must be made to relaxation and
iterative techniques. Additionally, FD methods have been associated
normally with regular zoning (at least topologically regular). For
these two reasons, FD methods were eclipsed by the Finite Element boom
in the 1960's for structural and solid mechanics applications. FO has
always been popular, however, in other areas such as Eulerian fluid
mechanics (e.g. Nichols, Hirt, and Hotchkiss, 1980).

For a regular mesh with "I" and "J" lines along the two
coordinate directions, standard finite difference approximations for

the gradient of a vector u are given by:

u%f%/Z,J+l/2= 1 (u%+1’d+1/2-u%’d+1/2)
Axl 1
u}f%/Z,J+1/2= 1__(u%+1/2,d+1_u%+1/2,d) 3.2)
sz
Eqns. (3.2) require the mesh to be topologically and geometrically

reqular.

The use of contour integral formulas (Wilkins, 1964) allows the
application of FD approximations to topologically and geometrically
irregular meshes. The basic idea is to employ Gauss' theorem in order
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to express the gradient of a field in a cell in terms of a contour
integral. Considering cell VE enclosed by contour Sk, and the gradient

of the displacement vector u,

f u1,JdV =f U.'anS (3.3)
E E

v S
If the gradient is assumed constant in the cell, then

1
Ujrj = -~/~u1njds (3.4)
yEJSE

The contour integral may be evaluated assuming a linear variation of u

along the edge of the cell.

Contour integrals may be used for any 2-D polygon or 3-D
polyhedron, to interpolate a value for the gradient at the centre of
the cell, knowing the values at the corner nodes. For the particular
cases of triangles and tetrahedra, an alternative technique 1is
available (e.g. Marti, 1981), in which the gradients are interpolated
directly by inverting the spatial finite difference equations. This
technique has been followed in the present work, and will be detailed

in section 4.2.1.

For explicit time-marching models the semi-discrete equations of
motion become uncoupied. This means that only Tocal approximations to
the partial differential equations (3.1) are performed within each
time-step, no iterations being needed for a FD operator, Such a fact
was exploited in the development of the first FD "Hydrocodes" at the
U.S. national laboratories in the 1950's. These were oriented mainly
towards sensitive nuclear and defence applications. Little publicity
was given until the 1960's (Wilkins (1964), Maenchen and Sack (1964},
Noh (1964)). At this time Finite Element Methods had just been
introduced for solid mechanics (Clough, 1960), and techniques were
being developed for linear analysis. Not much attention was given to
FD for solid mechanics by the engineering community, as indeed FE
methods seemed much more powerful and indeed advantageous for linear

systems, being able to provide a one-step global solution.

Interest in the nonlinear and wave-propagation regimes for
specialized engineering applications in the late 1960's and 1970's

40



created a resurgence(of the Hydrocodes (Bertholf and Benzley (1968),
Wilkins (1975)), and a certain degree of convergence between FD and FEt
literature (Belytschko (1978), Krieg and Key (1976), Goudreau and
Hallgquist (1982)). Explicit finite-difference methods were popularized
to wider sectors of the engineering community, and new codes were
created such as PISCES (Hancock, 1976), the rock mechanics codes of
Cundall and Marti (1979), and PR3D for solid mechanics impact by Marti
(1981).

3.3 FINITE ELEMENT METHODS

The first application of Finite Element techniques for continua
was by Clough (1960), although the theoretical bases for the method
had already been set by Courant (1943) and applications to structural
analysis had been proposed earlier (Argyris and Kelsey, 1954).

Finite Element discretizations rely on two essential ingredients:
a variational or weak form of the egns. of motion (3.1), and a
construction of approximate solutions based on generalized nodal

coordinates and independent element shape functions.

The domain V is subdivided into elements VE, interconnected by
nodes, An approximate solution is constructed within an element E as a

product of shape functions Ny(x) and the nodal displacements uf(t):
u(x,t) = u%(t)NI(x) (3.5)

where [ is summed over the nodes of the element. The shape functions
are chosen so that u is continuous over the element boundaries,
although its gradient need not be continuous (CO continuity). The
shape functions Ny so defined are independent of time; egn. (3.5)
constitutes in fact a 1local separation of variables

(semidiscretization).
The discrete form of the gradient operator may be written as

U-i,j =BJ~IU1'I (3.6)
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where

Let the solid continuum be V with boundary S, consisting of Su

and St1» where

0n=T* on ST

A weak form of the eqns. of motion (3.1) may be obtained by using
either Galerkin weighed residuals or the virtual work principle, both

of which yield the same result:

[ visgoigdv +/pv1-u1~dv = /pvjfidv + [vﬁ*ds (3.7)
v v v St
where v is the test function (or variation) and u the trial function.

Eqns. (3.7) require only CU continuity for both trial and test
functions, as opposed to (3.1), for which Cl continuity is needed. If
the approximations defined in (3.5) are used for u and v, and because
(3.7) must hold for arbitrary v, the global discrete equations are
deduced:

Mu + P(u) =R (3.8)

where the global coefficient matrices M, P, R are assembled from
individual element matrices that take the form:

ME= J[.pNINJéjjdV (mass matrix)
vE

PE=_/ﬁ 8j101jdv (internal forces) {3.9)
vE

RE=-/~ fiNpav +Jf NpT;dS {external forces)
vE st
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(3.8) is a system of ordinary differential equations of second order
in time; integration.of these is discussed in section 3.6. For a
linear model (small deformations and elastic behaviour), (3.8) becomes

Mi + Ku = R (3.10)

The stiffness matrix K is assembied from element matrices of the type

E .
v

In static analysis the inertia term may be dropped from egns. (3.8):
P(u) =R (3.12)
which for the linear case becomes
Ku = R (3.13)

For lTinear analysis, a solution is obtained merely by inverting the
stiffness matrix K in egns. (3.10) or (3.13). In a nonlinear case,
egns. (3.8) or (3.12) must be solved in a number of steps using Newton-
Raphson or ijterative techniques. It is interesting to note the abiltity
of FE to give a one-step solution to the linear problem, which FD
methods lack, having to approach the global solution through
relaxation and iteration. Hence the popularity of FE for linear
problems. For nonlinear behaviour, however, this advantage disappearss
as both FE and FD have to perform some sort of iterations.

For large systems, the assemblage of matrix K is undesirable, as
core memory limits may be exceeded and recourse must be made to slow,
costly disk Input/Output. This fact accounts for the popularization of
relaxation techniques for equation solving (e.g. Flanagan and
Belytschko, 198la), which avoid the assemblage of global coefficient
matrices. The FE operators are used only at a local level. In this
case Ft Dbecome conceptually very similar to FD methods with general
topology, specially as they often provide equivalent algorithms for
the local approximations (Kunar and Minowa, 1981).
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3.4 MESH DESCRIPTIONS

Let a particle X of body B be defined by its position at t=0
(reference configuration), X. At time t (current configuration) the

position of the particle will be
x = x(X,t) (3.14)

X are called the spatial coordinates, and X the material coordinates

of X. Eqns. (3.14) describe the motion of 8.

For the discretization of B three types of meshes may be used,
depending on the motion of the nodes of the mesh. The position of a
point of the mesh, initially coincident with particle X, will be given

by X = X{X,t).

3.4.1 LAGRANGIAN

In a Lagrangian description the mesh follows the motion of the

body,
X(X,t) = x(X,t) (3.15)

A given node remains coincident with the same material particle
throughout the motion. Each element will contain the same domain of
material throughout the deformation, thus enforcing implicitly the

continuity equation.

Motion of the boundary does not present difficulties, as it
always coincides with the mesh boundary. For a scalar field g(X,t),
the material time derivative (i.e. following the particle) coincides

with the partial time derivative:

09
ot
The only disadvantage of this description comes from the fact that the

mesh can become excessively distorted for certain problems (e.q.

g (3.16)

fluids, high velocity impact). In some cases, “rezoning" techniques




may be used to circumvent this problem (e.g. Kalsi and Marti, 1985).

3.4.2 EULERIAN
In an Eulerian description the mesh is fixed in space, i.e.
X(X,t) = X (3.17)

Nodes are no longer coincident with material particles through time,
and the material flows through the cells. Continuity must be enforced
explicitly. The material time derivative of g(X,t) includes a flux

term:

, 09 99dx g9 99
g=—+— — = —+ —y (3.18)

gt OJx dt gt Ox
Numerical computations for the flux of scalar fields tend to smear
their values, which will not be defined as sharply as for a Lagrangian
mesh. Material boundaries are difficult to describe, as they move
relative to the mesh. On the credit side, distortion is not a problem,
making Eulerian meshes preferrable to Lagrangian meshes for very large

deformations.

3.4.3 ARBITRARY LAGRANGIAN-EULERIAN

Arbitrary Lagrangian-Eulerian (ALE) descriptions attempt to
combine the advantages of Lagrangian and Eulerian meshes. The mesh
moves with an arbitrarily defined motion, X(X,t). d X/dt=0 for an
Eulerian mesh, d X/dt=v for a Lagrangian mesh. X can be defined so as
to follow the material in the boundary, but without causing excessive
distortion in the interior. ALE formulations have been developed by
Noh (1964) and Hirt et al. (1974) in FD formats, and by Donea et al.
(1977) and Belytschko and Kennedy (1978) in FE.

Material derivatives are given by

g = — + — — (3.19)



With an ALE description properties still need to be fluxed through

cells, and some smearing may occur as a result.

A crucial aspect in ALE descriptions is the definition of the
arbitrary motion of the mesh X for internal points. Generally a
complex rezoning algorithm is necessary for optimizing the new mesh
positions at each step. Such a general rezoning algorithm has been
proposed for 2-D by Giuliani (1982). Schreurs (1983) has proposed a
mesh optimizing algorithm based on the deformation of a fictitious
material from an "ideal" mesh. In fact ALE techniques would be
equivalent to Lagrangian descriptions in which rezoning is performed
at every step. Some applications (e.g. metal forming) may not need
such frequent rezoning, and Lagrangian techniques with rezoning at

wider intervals could be preferrable.

3.5 LARGE DISPLACEMENT FORMULATIONS

Several formulations are possible depending on which
configurations the stress and deformation tensors are referred to.
Three alternatives widely used in solid mechanics are presented below.

3.5.1 TOTAL LAGRANGIAN

The 2nd Piola-Kirchhoff stress tensor S and the Green strain
tensor E, both of which relate to the reference configuration, are
used to describe the material behaviour. Hibbit, Marcal and Rice

(1970) proposed this description in the first published large-strain,

large-displacement nonlinear formulation for general purpose FE codes.

A constitutive relation is given by

S = S(E) (3.20)
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and in rate form by
$ = D:E (3.21)
(éld = DIJKLéKL components)

S and E being material tensors, their material rates are objective.
This formulation is advantageous for Hyperelastic materials, whose
behaviour is described on the reference configuration. In this case,

calling W the strain energy functional per unit mass,

9%
D = — = N8y 0y +266;¢ 0y
JE2 (3.22)
W
S = —
OE

Elastic-plastic material behaviour is best described on the
current configuration, x (Hi1l, 1950). It is possible to transform
such a law into one of the type (3.21) (e.g. Hibbit et al. (1970),
Krieg and Key (1976)), but complex and computationally expensive
transformations are necessary. However, Simo and Ortiz (1985) suggest
that total Lagrangian, Hyperelastic-type formulations provide a more
rigorous approach for incremental, non-linear calculations. Such
rigour is not justified in explicit calculations with very small

steps.

3.5.2 CAUCHY STRESS-VELOCITY STRAIN

A description based on the current configuration may be used to
model the behaviour of materials with smooth memory. In the simplest
case, the Jaumann rate of Cauchy stress ( 5 ) and the rate of
deformation tensor (velocity strain, d) are related by

v
o= C:d (3.23)

( gij = Cijk]dkl in component form)
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where C is the constitutive tensor. For an elastic-plastic material

(hypoelastic with associated plasticity) C takes the form
Cijk1 =A0ij0k1 + 26(05k057 - Mnyjnyy) (3.24)

where 7>0 for plastic loading, =0 otherwise
n is the unit normal to the yield surface

The Jaumann derivative used in egn. (3.23) provides the
constitutive part of the stress rate. To obtain the total stress rate

the rotational components must be added:

0. . = + (3'25)

v
i3 7 %3 T Wip%j * Yip%pi

If the material behaviour is anisotropic, C must be updated with a
similar objective rate:

. v

Cigk1 = Cigk1™iptpik1 ™ pCipk1 ™WikpCijp1™1pCijkp (3.26)

An alternative formulation results from the use of the Truesdell

rate in egn. (3.23):

[o]

0=C:d (3.27)
(3.23) and (3.27) are equivalent if one sets

Gijk1 = C43Kk17 %30k~ (04k 8517031 84 F T3 841+ 04184 )/ 2 (3.28)
The Truesdell stress rate is the forward Piola transformation
(eqns. 2.22, 2.25) of the rate of the 2nd Piola-Kirchhoff stress

tensor:
& = 0 £(3718) (3.29)

Pinsky, Ortiz and Pister (1983) have suggested that the Truesdell
rate formulation is the natura)l one to use (in the current
configuration) for hyperelasticity. In this case the constitutive
tensor is obtained directly, from the total Lagrangian tensor D, as
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C = Uyx(y-1D).

Classical plasticity is described on the current configuration
(Hi11, 1950). Jaumann Cauchy stress formulations have been widely and
successfully used for elastic-plastic behaviour (Wilkins (1964),
Maenchen and Sack (1964), Krieg and Key (1976)). With such
formulations hyperelastic behaviour (related to the original
configuration) may also be described, albeit in a less convenient way,

as the constitutive relations need to be pushed forward into the

current configuration.

Finally, one problem with this formulation is that d is not
integrable (i.e. it is not the rate of any valid strain tensor).
Additional strain computations must be done if a total strain measure

is required.

3.5.3 UPDATED LAGRANGIAN

In this formulation the model is described on a reference
configuration, which is updated at each increment to coincide with the
current configuration, From this updated reference, the incremental
configuration is described with a total Lagrangian formulation. This
method was first proposed by Yaghmai and Popov (1971), and has been
widely used since for incremental nonlinear analysis: Osias and
Swedlow (1974), Bathe et al. (1975), Nagtegaal and de Jong (1981).

For this description, F = I (identity) and J = 1. Hence, eqgn.
(3.29) implies S = G. It is also easy to see from egn. (2.19) that é =
d. In fact this formulation reverts to the Truesdell Cauchy stress
rate formulation, eqn. (3.27). This means that the tensor to be used

for the tangential stiffness is C.

3.6 TIME INTEGRATION

Using either Finite Difference or Finite Element Methods for the
spatial semidiscretization, the partial differential eqgns. of motion
(3.1) may be transformed into a system of ordinary differential
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equations in time:
Mi + Ca + P(u) =R (3.30)

These egns. can be solved either by modal analysis or by direct
integration., Modal analysis methods (e.g. Bathe and Wilson (1976),
chpt. 8) perform transformations of eqns. (3.30) which are only

valid for linear or quasi-linear systems (i.e. P(u) = Ku)

For nonlinear analysis, direct integration (time-marching)
methods must be used. For these the time domain is divided into time-

steps {(At), and an incremental analysis is performed for each step.

Time integration procedures may be classified into explicit and
implicit. Explicit schemes compute the incremental displacements yttat
from the equilibrium conditions at time t. Implicit schemes, on the
contrary, solve the eqns. of motion (3.30) at t+hAt > t, producing an

implicit system of eqns. for ut+At,

Two of the most common and representative time-integration

schemes, one in either class, are presented below.

3.6.1 CENTRAL DIFFERENCE (EXPLICIT)

Central difference methods are the most widely used explicit
schemes for solid mechanics, being the optimal from a very wide class
(Key, 1978). The Finite Difference expressions used for velocity and

acceleration are
a2 (L y/ae (3.31a)

un = @ntl/2gn-1/2) 4 (3.31b)

Note that each derivative lags the value by half a time-step.
Particularizing the equations of motion (3.30) at time n,

e

Ma" + ca" + P") = R (3.32)
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Using egn. (3.31b) and letting un = (un-1/2+yn+1/2)/2, eqgn. (3.32) may

be solved, yielding:
a*1/2= (w/at-cr2)tmsat-c/2)a" " 2R -p(u") ] (3.33)

The new displacements untl are then found from eqn. (3.31a). If the
system has no damping (C = 0) and the mass matrix M is diagonal, egns.

(3.33) become uncoupled:

These eqgns. can then be solved independently for each degree of

freedom I:
fl?+l/2= &T-1/2+&(Rr11 - pr1)/mI (3.35)

The equations also become uncoupled if the damping is assumed to
be of the Rayleigh type, as shown in section 4.6,

This uncoupling of the equations of motion is the major advantage
of explicit integration procedures. No mass or stiffness matrices need
be inverted or even assembled, as all the incremental calculations for
each degree of freedom can be done independently at the local Tevel,
This not only allows for a simpler architecture in computer codes, but
it enables the treatment of non-linearities {(be it of Constitutive,
Geometric or Boundary type) with virtually no added cost from the
linear case. The number of operations per time-step is much smaller
than for implicit methods (section 3.6.2), and storage requirements

grow only linearly with the size of the problem.

The main disadvantage of the central difference and other
explicit methods is that computations are only conditionally stable
depending on the time-step size. The time-step must be smaller than a
certain critical value for numerical errors not to grow unbounded,
This constitutes a major obstacle for certain problems where an
excessive number of time-steps makes the analysis too costiy.

The stability of the central difference method is considered in
section 4.7, The time-step is 1imited by the Courant criterion, i.e.
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the time it takes the stress waves to travel across one element. This
limitation is consistent with the local, uncoupled integration of the
equations of motion. If the time-step was larger than the Courant
critical value, stress waves would travel across an element within one
time-step, affecting the surrounding elements. The incremental
behaviour of that element would no longer be independent from the rest

of the model.

Central difference schemes have been widely used in nonlinear
numerical codes, from the early FD hydrocodes of Wilkins(1964) and
Maenchen and Sack(1964), to the FE codes of Hallquist (1982a, 1982c),
Key (1974), and Belytschko and Tsay(1982). The accuracy and
stability of central difference methods has been studied and discussed
by various authors (e.g. Belytschko, Holmes and Mullen (1975),
Belytschko(1978), Krieg and Key(1973)). The central difference method
is considered as the most convenient within the explicit class.

3.6.2. TRAPEZOIDAL RULE (IMPLICIT)

The so-called trapezoidal rule is an example of implicit
integration methods. In fact it constitutes a particular case of the
Newmark family, probably the most popular of the implicit schemes. A
constant average acceleration is assumed for each increment At. The

difference equations are:

Nt o= @ oty (0 < h <1)
a" o= ane @ o+ Gt a2 (3.36)
WML = e Gt ¢ (a" + " )atlss

For obtaining un+l the equations of motion are enforced for time

t+At. In an undamped case,

mintle puntly = gntl (3.37)

Eqn. (3.37) is an implicit relation for un+tl, Substituting the
difference expressions (3.36) in (3.37) the following system is

obtained:
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La/at2)mekM L ¥ = RV Lurasat )" +(4/at )a i | (3.38)
where Kn*+l is the secant stiffness matrix ( Pntl= Kntlyn+l),

For a linear system (Kn = constant) egns. (3.38) may be solved by
inverting the modified stiffness matrix K*, defined as

K* = (474t dm+xntl (3.39)

For nonlinear systems the equations are generally solved by
direct elimination techniques, e.g. Newton-Raphson type methods (which

require triangularization of K*).

The trapezoidal rule is unconditionally stable (see e.q.
Belytschko and Schoeberle, 1975), the time-step being Timited only by
accuracy considerations. This is the main advantage of implicit
schemes, which makes them more appropriate for problems in which large
time-steps can be used. [f the time-steps are limited to small values
for reasons other than stability (e.g. steep nonlinearities, accuracy,

stress-waves) implicit methods lose their advantage.

Another limitation is the large storage required for the matrix
coefficients, which restricts severely the size of problem that can be
solved in-core. Larger models and 3-D analyses must often resort to
out-of-core storage with frequent and slow disk I[/0. Because of this
problem, alternative equation solving methods based on iterative or
relaxation procedures are becoming popular. Classical methods of this
type are the Jacobi and Gauss-Seidel procedures, although their
effectiveness for Finite Element codes is limited (Belytschko, 1983).
More promising for FE topologies are conjugate gradient and quasi-
Newton methods. A new and seductive Element-by-Element equation solver
has been proposed lately by Hughes, Levit and Winget (1983b);
basically it consists of an operator-splitting method that takes
advantage of the FE data structure (see also sect. 3.6.3).

Implicit methods are less reliable as to completing the
computations without crashing and with the requisite accuracy than
explicit methods (Belytschko, 1983).
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Nonlinear models are generally more difficult with implicit
schemes. Firstly 11e§ the increased cost of the Newton-Raphson
iterations. Then is thne fact that all boundary conditions,
noniinearities, etc. must be included implicitly in the secant
stiffness matrix (K* in eqn. (3.39)). This greatly complicates the
formulation and may restrict the range of constitutive models and

boundary conditions that may be used.

3.6.3 OPERATOR SPLIT METHODS

From the discussion in sections 3.6.1 and 3.6.2, it is clear that
an operator combining the advantages of explicit methods (uncoupled
equations, simple program architecture, no storage of global matrix)
with the unconditional stability of implicit methods would be very
desirable. Operator split methods attempt to combine such

characteristics.

An unconditionally stable explicit procedure was proposed by
Trujillo (1972) and received various extensions by Park (1982). This
consists in splitting the stiffness K into upper and lower matrices
and performing two passes in alternate directions, each pass
corresponding to half a time-step. Although this procedure appears to
work well for heat conduction (Trujillo, 1975), for structural

dynamics the accuracy is poor (Mullen and Belytschko, 1983).

A promising avenue is the use of Element-by-Element methods,
which perform a factorization taking advantage of the FE data
structure. Such an algorithm has been proposed for solid and
structural mechanics by Ortiz, Pinsky and Taylor (1983). In its
original form this method was proposed by Hughes, Levit and Winget
(1983a) for heat conduction. The same authors (1983b) report
unsatisfactory accuracy in structural dynamics, and suggest this
technique be used instead as a linear equation solver within an
implicit scheme. The approach of Ortiz et al (1983) uses velocities
and stresses as unknowns. They perform tweo passes in alternating
directions within a trapezoidal rule to obtain second order accuracy.
A guestion mark still hangs over the accuracy of these methods.
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3.7 PRACTICAL CONSIDERATIONS FOR DISCRETE MESHES

A number of undesirable effects can be generated by the nature of
the spatial semidiscretization. Unacceptable solutions may be produced
by Finite Element meshes even if the elements satisfy the standard
convergence criteria (e.g. Zienkiewicz, 1977, chpts. 243). Two
problems, related to the degree of volumetric constraint, are
discussed below. "Locking up" occurs for excessive constraint,while

"hourglassing" modes appear if volumetric constraints are too relaxed.

Another problem not discussed here, but to which reference is
made in other sections (4.2.3, 7.4.4) is the excessive distortion in
Lagrangian meshes for models with very large deformations, which may

cause tangling over of the mesh.

3.7.1 "LOCKING-UP" FOR INCOMPRESSIBLE FLOW

Some meshes (in particular constant strain triangles and
tetrahedra) give overstiff solutions for incompressible plastic filow.
Although this is a well known fact, some authors have continued to use
them for convenience (e.q. Johnson, 1976, 1977). The validity of
such practice has been strongly questioned (Hallquist, Werne and
Wilkins, 1977).

The reason for "locking-up" was shown in a classical paper by
Nagtegaal, Parks and Rice (1974) to be an excessive number of
volumetric incompressibility constraints in the discrete meshes.
According to Nagtegaal, the number of volumetric constraints must not
exceed the number of Degrees Of Freedom (DOF) of the model. Ideally
the degree of constraint should be the same as in the continuum, with
one incompressibility equation per material point (v1,1=0). Thus the
ideal ratio DOF/constraints equals 2 for plane strain or axisymmetric
analyses, and 3 for three-dimensional models. For convergence, the
ratio DOF/constraints should tend to a value greater than 1 when the
mesh is infinitely refined. Nagtegaal et al (1974) studied a few
commonly used elements and found some of them to be unsuitable. Some

of their results are presented in table 3.1.
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Constraints Nodes DOF
tlement Element | Constraint
PLANE STRAIN

Constant Strain Triangle ‘{iiiix

(CST) 1 l/2 1
Isoparametric 4-node
quadrilateral 3 1 2/3
Mixed Triangles-Quad.

(MTQ,MTQC) 1 1 2

AXISYMMETRIC
Constant Strain Triangle ‘ZE&
(CST) (exact hoop strain) 3 1/2 1/3
Constant Strain Triangle
(CST) (reduced hoop str.) ‘fﬁ& 1 1/2 1
Mixed Triangles-Quad.
(MTQ,MTQC) with reduced 1 1 2
hoop strains

3-DIMENSTONAL

Constant Strain Tetrah.
(CST),5 per brick, A 1 1/5 3/5
regular lattice
Constant Strain Tetrah.
(CST),6 per brick, A\ 1 1/6 3/6
regular lattice
8-node isoparametric :
brick el 7 1 3/7
Mixed Tetrah.-Brick
(MTB,MTBC) 1 1 3

5 or 6 Tetrah./Brick

Table 3.1: Ratios of Degrees of Freedom to incompressibility

constraints, for infinitely refined 2 and 3-D meshes.

56



To achieve convergence, the number of volumetric constraints must
be relaxed. For this, Nagtegaal et al (1974) proposed a modified
variational method which essentially consists of performing a reduced
integration on the volumetric stresses. This can be applied only to
elements in which full numerical integration comprises more than one
gquadrature point. A one-point volumetric integration is proposed for
4-node quadrilaterals and 8-node bricks. This method is called
"selective" integration, and the elements produced possess the desired
number of constraints. In practice, reduced integration is
often extended for convenience to the deviatoric stresses as
well(Hallquist,1982b). This excessive relaxation may create additional
problems ("Hourglassing") which must be treated appropriately (section
3.7.2). In a Finite Difference context the equivalent to one-point
reduced integration is obtained by using contour integral formulae
(Wilkins, 1964).

An alternative solution, starting off from the simplest triangies
and tetrahedra, is to group several elements together and average the
volumetric strains between them. Such a solution is the "Mixed
Discretization” (MD) procedure proposed by Marti and Cundall (1982).
This refers the deviatoric strains to the basic triangles/tetrahedra
and averages the volumetric components within one quadrilateral (2
triangles) or one brick (5/6 tetrahedra) (section 4.2.2). This
technique has been employed for the present work. The result of this
MD may be interpreted as new, larger elements, which will be termed in
the following MTQ (Mixed Triangles-Quadrilateral) and MTB (Mixed
Tetrahedra-Brick). These elements have the desired number of

constraints (table 3.1).

Johnson (1981) has also used a volumetric averaging procedure for
3-D similar to the proposed MD. For 2-D Johnson (1981) employs meshes
of crossed triangles, which were shown by Nagtegaal et al (1974) to be
less stiff than ordinary triangle layouts. The behaviour of these
crossed layouts is not as good as that of MD, however (see section
5.7).
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3.7.2 "HOURGLASSING"

Some commonly used meshes admit certain unopposed deformation
modes. These are called “zero-energy" or "hourglassing" modes, because
of the similitude with an hourglass pattern. If not dealt with,
hourglassing modes quickly grow and dominate the solution. Examples of
such meshes are quadrilaterals or bricks, with one-point quadrature in
FE, or contour integral formulae in FD. In both cases Hourglassing
appears as the price for an excessive reduction in the stress
integration. However, anti-hourglassing treatments do exist and may
sometimes be preferrable to the excessive cost of selective

integration (Goudreau and Hallquist, 1982).

The first anti-hourglassing solutions were reported in the FD
hydrocodes (Maenchen and Sack, 1964), consisting of artificial
viscosity terms. A similar procedure in 3-D has been used by Wilkins
et al.(1975). These techniques involve considerable computation and
are not completely independent of rigid body modes. A more rigorous
treatment of hourglassing has been followed by Flanagan and Belytschko
(1981b), who pursue the idea of the orthogonality of hourglassing
modes to the first-order modes, first proposed by Kosloff and frazier
(1978). Flanagan and Belytschko use an additional contribution to the

stiffness matrix, called stabilization matrix.

From a more practical viewpoint Goudreau and Hallquist (1982)
have considered Flanagan and Belytschko's algorithms to involve an
excessive computational cost. Furthermore, exact treatment of
hourglassing is not necessary, as hourglassing modes are global modes,
and element hourglassing is often a stable kinematic component of a
global energy mode. In the DYNA codes Hallquist (1982b) uses an anti-
hourglassing viscosity based on Flanagan's orthogonal modes,

simplified to produce an operation count 4 to 5 times lower.

Reduced selective integration or "Mixed Discretization" resist
the hourglassing modes "naturally" with deviatoric stresses, by-
passing the need for any special treatment. A question mark is put by
Goudreau and Hallquist (1982) on whether the added cost of these
techniques 1is worthwhile in terms of improved accuracy. Additionally,
for some applications like high-pressure shock waves where strength is
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not a factor, deviatoric stresses may not be able to restrain

hourglassing.
3.8 CONCLUSIONS

Finite Difference and Finite Element methods provide alternative
solutions for spatial semidiscretization, with their own independent
schools and literature. However, recent trends in Finite Elements
avoid the assemblage of global coefficient matrices (e.g. explicit
methods or implicit methods with relaxation techniques for equation
solving). In these cases FE and FD approaches are conceptually very

similar.

Lagrangian, Eulerian or ALE techniques provide alternative
descriptions for the mesh, each of them with points in favour and
against. Lagrangian meshes are generally preferred for solid
mechanics. Various nonlinear formulations are presented, each best
suited to a different cliass of problems. Total Lagrangian formulations
are advantageous for hyperelastic-type materials (behaviour described
on the original configuration), while Cauchy stress formulations are
preferrable for hypoelastic and plastic materials (described on the
current configuration). Equivalent algorithms for a given material may
generally be found in both formulations, albeit at the expense of
costly transformations between current and original configurations.

For time integration, the choice is between implicit and explicit
schemes. Both possess very different characteristics as to stability,
code architecture and storage requirements. Explicit techniques are
well suited for problems dominated by high frequency components (wave
propagation), or which are steeply non-linear, and of short duration.
Implicit techniques are to be preferred for inertia-dominated models
(lTow frequencies), less non-linear, or of longer duration.
The direct elimination techniques used generally for equation solving
in implicit methods severely 1imit the size of problems that can be

modelled, specially in 3-D.

The new Element-By-Element techniques proposed recently are

promising alternatives. They appear to be most useful as linear

59



equation solvers within implicit methods. As unconditionally stable
explicit time operators, accuracy problems still need to be overcome

pefore they are used in production codes.

Finally, "“locking-up" and "hourglassing" are important practical
problems related to the spatial semidiscretization, requiring special
attention; if not provided for, convergence may not occur in otherwise
theoretically "sound" meshes. The method of tackling these problems
often conditions strongly the overall approach of the numerical model.
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4.1 INTRODUCTION

Numerical Finite Difference (FU) techniques for the nonlinear
analysis of 2 and 3-Dimensional elastic-plastic continua are descriped
here. Explicit central difference interpolations are used both in
space and time domains, with triangular/tetrahedral cells for the
spatial semidiscretization. No restrictions are placed on the topology
of the mesh, which in this aspect is identical to those of Finite

Liement methods.

The method outlined is a general purpose one and may be applied
to both linear and nonlinear, time-marching thermomechanical analysis
of continua; however, it will be most advantageous for short duration
highly nonlinear problems, such as arise from impact. A great freedom
is available for implementation of material constitutive laws. For the
present work (mainly in non-cyclic loading of metals) material laws
have been restricted to elastic-plastic Von Mises models with

kinematic-isotropic hardening.

Material damping is included, permitting the use of dynamic
relaxation for quasi-static problems. A numerical contact algorithm
models the interface between continua, often present in nonlinear
impact calculations. Finally, for generality, thermal effects allowing
heat generation/conduction and material dependence on temperature have

been included, enabling a fully coupled thermomechanical analysis.

The theory and numerical techniques described below apply in
general for 2 and 3-D models. A 2-D code with axisymmetric capability
was developed for this thesis, implementing the algorithms described.
In general, implementation details for the algorithms are given only
for 2-D. Some algorithms (e.g. thermal effects, prevention of negative
volumes) have also been implemented by the author in an existing 3-D
program (Marti (1981,1983)), (Marti, Goicolea, Kalsi, and Macey
(1984)), (Marti, Kalsi, and Last (1984)).

4.1.1 GENERAL METHODOLOGY

Before entering into details of the numerical techniques, it is
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useful to describe the philosophy of time-marching explicit
calculations. These provide a set of uncoupled discrete equations of
motion, which may be solved explicitly without assembling or inverting
global stiffness or mass matrices. The program arquitecture is quite
different from the usual linear (static or dynamic) or implicit non-
linear techniques, allowing a greater generality in the treatment of
nonlinearities (large deformations, material behaviour, contacts).

It is assumed that the functional dependence of the displacements
on space and time can be separated, giving rise to independent
semidiscretizations for both domains. The mesh for the spatial
semidiscretization is Lagrangian (sect. 3.4.1), i.e. the grid nodes
represent material points and move with them. The time domain is

divided linearly into time-steps.

The computational cycle performed to advance the problem in time
may be described as follows (fig. 4.12). At a particular instant,
coordinates, velocities and accelerations are known. The accelerations
are integrated with a central difference scheme for each grid-point,
to find the new velocities and displacements. These are then used in
spatial difference equations to interpolate the deformation gradients
and strains for each cell. Applying the material constitutive
equations, strains give rise to stresses, which are then integrated
around each grid-point to provide nodal forces. Dividing by the mass
(lumped at nodes) the new accelerations may be found. Here the
computational cycle is complete and may be recommenced for the next
time-step. This process continues until the total time for analysis is
reached. Nonlinear boundary constraints giving rise to displacement or

force conditions are introduced into the cycle explicitly.

For the thermal analysis the computations advance in parallel and
coupled with the mechanical cycle. Influx of heat into a cell from
heat sources, heat conduction, or produced by plastic work, gives rise
to temperature increments., The gradients of the new temperatures
create heat fluxes (calculated from Fourier's conduction law),
allowing repetition of the cycle for the next time-step.

A price is paid for the generality and simplicity of explicit
algorithms, in that the computations are only conditionally stable,
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limiting the size of the time-step to small values. However, the
operation count per time-step is much smaller than for implicit
methods. The critical time-step may be estimated accurately, and the
robustness of the computations does not suffer as a result of the
conditional stability. The main implication of the time-step
restriction is the large number of computational cycles necessary for

medium or long duration analyses, which often become uneconomical.

In explicit calculations, the limiting factor is generally the
CPU time, rather than core storage. When constructing the mesh, it
must be taken into consideration that the time-step is proportional to
the minimum element size. A local refinement of the mesh, even if it
only adds a small number of elements, may increase greatly the number

of time-steps necessary and hence the computational cost.

Quasi-static models

By their nature, explicit computations are essentially dynamic,
relying on numerical integration of the equations of motion with non-
zero masses for the time-marching solution. No simplification of the
cycle is possible for quasi-static analysis. However, many such
problems can still be solved advantageously, using dynamic relaxation
(damping out vibrations until a steady-state is reached), or velocity

scaling (increasing deformation velocity in a controlled manner).

Dynamic relaxation may be argued to be a more natural approach
than the static stiffness equations (3.12), (3.13). As in the physical
world, with dynamic relaxation static equilibrium is reached as a
limiting steady-state. In general, solution will require a greater
computational effort, although if adaptative techniques are used for
mass and damping parameters (Underwood, 1983), the difference may be
small. One definite advantage explicit relaxation methods have, which
may be overwhelming in large 3-D systems, is that they do not need to
store any large global coefficient matrices. For non-linear problems,
dynamic relaxation requires some care so as not to apply too large
load-steps which would cause an irreversible overshoot in the
solution. Additionally, if the loads are applied gradually, the amount
of relaxation needed after reaching the maximum load is greatly

reduced.
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Velocity scaling exploits the fact that for sufficiently slow
loading, the relaxation process may be ommitted altogether, without
excessive errors. This allows modelling a slow, quasi-static process
merely by contracting the time-scale. As in dynamic relaxation,
loading must be slow enough not to cause overshoots. The errors
incurred in this process are in the form of elastic stress waves left
travelling in the model. for elastic analyses, velocity scaling will
not be appropriate in general, as the intensity of these waves will be
important with respect to the overall stresses. For plastic analyses
however, the error will merely be in the form of an elastic “noise"
superposed on the smoother quasi-static solution (see also sections

6.5.1, 7.3.2.2).

4.2 SPATIAL SEMIDISCRETIZATION

A discrete mesh of triangles (2-D) or tetrahedra (3-D) is affixed
on the initial (reference) configuration of the continuum, and
particles are followed through time (Lagrangian mesh). The current
configuration is a function of the reference configuration and time:

x = x(X,t) (4.1)

Displacements (u = x-X), velocities (v=u) and accelerations (a=u) are
defined at the nodes. Deformation gradients F, rates of deformation d,

strains E, and stresses g are referred to the centroid of each cell

(fig. 4.1).

The computations related to the discretization fall into two
areas: firstly the interpolation of strains and deformation gradients
from the nodal displacements, and secondly the integration of stresses

around each grid-point to obtain the nodal forces.

Triangles and Tetrahedra are the only element types which provide
a one-to-one correlation between the sets of all possible corner
movements and deformation gradient tensors. This fact inherently
eliminates zero-energy ("hourglassing") deformation modes (unopposed
movements of the corner nodes), which occur for other elements such as
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quadrilaterals or bricks with reduced integration. It also allows a
direct obtention of the gradients from the difference equations

without using contour integrals (egn. 3.4)

However, meshes of constant strain triangles or tetrahedra often
"lock-up" when modelling plastic flow, giving solutions which are very
overstiff (see sect. 3.7.1). The Mixed Discretization (MD) procedures
proposed by Marti and Cundall (1982) are employed here to overcome
this problem. The new elements created by Mixed Discretization will be
called MTQ (Mixed Triangles-Quadrilateral) and MTB (Mixed Tetrahedra-

Brick).

Mixed Discretization is attractive for elastic-plastic
calculations because it allows the use of simple elements, which avoid
zero-energy modes naturally, without the need for artificial anti-
hourglassing terms (see sect. 3.7.2). However, it eliminates an
advantage of triangular/tetrahedral meshes, 1i.e. the impossibility of
tangling over due to asymptotically infinite resistance to zero or
negative volumes in each cell. This problem need only cause concern
for meshes with very large distortions. Nevertheless, for such cases
it does constitute a serious drawback, causing the computations to

crash unless the mesh 1is rezoned.

To overcome the problem of tangling over in MD meshes, a new
family of corrected elements is proposed in section 4.2.3: corrected
MTQ (MTQC) and corrected MTB (MTBC) for 2 and 3-D respectively. These
elements recover asymptotically the resistance to zero volumes of the
basic CST elements, when one cell in the Mixed Discretization group
becomes much smaller than the rest and tends to zero volume. The
ability of modelling incompressible flow is maintained, thus providing

a more robust alternative to MD.
4.2.1 CONSTANT STRAIN TRIANGLES AND TETRAHEDRA (CST ELEMENTS)
Constant strain triangles and tetrahedra (CST) may be used

directly as such for elastic analyses, or as the basic ingredient for

MD (sect. 4.2.2) or corrected MD (sect. 4.2.3) meshes.
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interpolation of deformation gradients

Velocity gradients are interpolated at the centroid of the cell
from direct use of difference equations. Nodes are numbered N=0,1,2
(triangle) or N=0,1,2,3 (tetrahedron) (fig. 4.1). Node 0 is taken as
an arbitrary reference point. The difference equations take the form:
N

Vi = V? = V.i,j(Xj - XSJ) (4.2)

where superscripts refer to nodes and subscripts refer to components.

Using the notation ( )IJd=( )I-( )J, (4.1) may be written as follows:

Vl_:lo = V. XNU (4.3)

1,37
This may be put into matrix form and inverted, to obtain
Lvi, g0 = LYR(,N)JLXR(N,3) 471 (4.4)

where the notation VR(i,N)=vlNO, XR(N*U=ny has been used. All
matrices in eqn. (4.4) are 2x2 for 2-D or 3x3 for 3-D.

The rate of deformation and spin rate tensors may be obtained as:
dj

3= Wiy rvy,il/e

]

Wig = (vi,j - vy,i)/2

For 2-D additional considerations must be made to determine the
out-of-plane components. Assuming axis no. 3 pointing out of the

plane, these conditions are:
- Plane strain, d33=0;

- Plane stress, o033=0; this is a stress condition which must be used
together with the stress-strain law to obtain the appropriate rate of

deformation (eqns. 4.41, 4.42);

- Axisymmetric (axis 2 of symmetry), dy3 = vj /% at each point in the
continuum; this condition may be relaxed by enforcing it only at the
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Ficure 4.2: Path for stress integral around node 1

69



triangle centroid,

g = ] vl v (4.6)
33 (x% + x{ + xf}/s

Generalized natural strain increments are defined as
A€jj = dijAt (4.7)

where At is the computational time-step. These increments may be

decomposed into:

- Volumetric part, A€, = A€y
- Deviatoric part, Aejj = A€j; - 5ijA6kk/3 (4.8)

Integration of stresses to obtain nodal forces

The internal force applied at each node 1 may be obtained by
integrating the stresses in a closed surface containing the node,

S(1):

pih) =/ 0;5ndS (4.9)
S(1)
where nj is the (unit) outward normal to S(1). S(1) is constructed in
2-D (fig. 4.2) by forming a polygon joining the centroids of the
triangles and centres of the sides sharing node 1, agbpcgdresfta. In
fact, this polygon is only a cross-section of surface S(]); for plane
strain and plane stress s{1) is a slab of thickness t, while for
axisymmetric models it is the surface of revolution generated rotating
the polygon around the axis of symmetry. A similar surface may be
constructed in 3-D from a polyhedron with corners in centroids of

tetrahedra, centroids of faces and centres of edges.

The contribution of each cell to the nodal forces is detailed
below for 2-D. The notation of fig. 4.2 will be followed for node and
cell numbers., Different formulations are necessary for plane strain or

stress and axisymmetric models.
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Piane strain or plane stress

From eqn. {4.9) the contribution of cell C to the force at 1 is

obtained as follows:
5(1)C _
p{lIC = ¢ [ oingas (4.10)
agb

The thickness t is constant (=1) for plane strain but may vary for

plane stress. Considering Gauss' theorem, the integral in egn. (4.10)

may be expressed as follows:

jajjnjds = [ oijnjds + f U]'jnjds = '/‘a,ij,‘]'dA + [U.ijnjds (4.11)
agb agba ap Aagba ab

where Ajgpais the plane area enclosed by agba. As the divergence of a
constant field is null, the integral over this area is zero. The nodal

force becomes:

piIC < ¢ agjv[ nsds (4.12)
ab

or explicitly in matrix form:

] ] SNV
LPfIC, pENIC) = B g n (4.13)
912 922

Axisymmetric

Cylindrical coordinates are used for describing axisymmetric
models (x] radia) coordinate, x2 axial coordinate). The divergence of

a constant vector is no longer zero as it was for Cartesian

coordinates:

divieyy o2 o33 = 01,1 ¥ 9i3,3 * oqg,2/x1F oi1/xy= o1/ (4.14)



The contribution of a cell C to the integral in eqn. (4.9) becomes

f”ijnjds +[U1-jnde = f (Uil/xl)znxldA +[01j27rxlﬂjd5 =
5 S ab

Sagba ab Aagba
(4.15)

- v C h ab

where: Sagba’sab denote surfaces of revolution generated by agba & ab
AC total Cell area

Aagba = AC/6 , area enclosed by triangle agba
labl , nab are the length and unit normal of segment ab

In addition to the terms from eqgn. (4.15), radial forces are produced
by the hoop stresses 033. These forces are not included in (4.15), as
the integrals cover the complete 2 toroid where opposite radial
components cancel out (fig. 4.3). However, if one considers only a

sector of angle ¢:

%)
P! =fP§] Ja =epfl) - wf o330
0 1)

N

and the contribution of cell C for the complete 2 is:
pp)C - % /_\C03327r = Zg 033;\0 (4.16)

which added to (4.15) gives the total nodal force contributions. In
matrix form,
911 912
LPﬁ])C P§])CJ =7 (2x1 + xT + xT)Lxgm xTnJ +
912 %22 (4.17)
+ §AC Loy o1p0 + §PCLa33 01

4.2.2 MIXED DISCRETIZATION (MTQ, MTB ELEMENTS)

Mixed discretization procedures are described in this section.
This techniques avoid the excessive stiffness otherwise associated

with constant strain triangles or tetrahedra for incompressible flow

(see sect. 3.7.1).
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According to Nagtegaal, Parks and Rice (1974), for accurate
modelling of incompressible plastic flow, the ratio between the number
of Degrees Of Freedom (DOF) in the mesh and the number of constraints
imposed by the incompressibility condition must be > 1. For Constant
Strain Triangles, The ratio DOF/constraints for infinitely refined
plane strain and axisymmetric meshes is equal to 1l (considering for
the axisymmetric case that the radially varying hoop stresses are
reduced to the value at the element centroid (eqn. 4.6), otherwise the
ratio would be 1/3) (table 3.1). For tetrahedra forming bricks in a
regular lattice, the ratio is either 3/5 or 3/6 depending on whether
each brick is composed of 5 or 6 tetrahedra (table 3.1).

Nagtegaal et al. (1974) suggested a modified variational
principle to improve meshes which would otherwise be unsuitable. The
idea behind this modification is to make sure dilatation is governed
by fewer parameters than for conventional elements. Starting from
elements with more than one integration point, this is achieved by
averaging the volumetric strains within each eiement (effectively
performing a reduced integration on them). Based on the same
principle, Marti and Cundall (1982) have proposed Mixed Discretization
(MD) procedures valid for FE or FD meshes with Tower order elements
(one integration point), in which volumetric strains are averaged for

groups of several elements.

The ideal vatue for the ratio DOF/constraints is that of the
continuum, 1in which for each material point there is one volumetric
equation and N (no. of space dimensions) DOF. Using MD these ideal
ratios are achieved if averaging is performed within the following

MD groups (table 3.1):

- 2 Triangles in one Quadrilateral for 2-D (MTQ elements);

- 5 or 6 Tetrahedra in one Brick for 3-D (MTB elements).

[f Ci (i=1 to M) stands for the individual cells and E for the
total element (MTQ or MTB), the Mixed Discretization procedure
consists simply of substituting the volumetric strains in each cell by

the volume-weighed average of the group:

73



%

fo
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M M
aebt = ael = () aefivtly ) WU (4.18)
i=1 i=1

where VC1 are the volumes of the individual cells. M=2 for 2-D and M=5
or 6 for 3-D, For axisymmetric models, the average in eqn. (4.18) is
area-weighed instead, in order to avoid problems near the axis of

symmetry.

Apart from having the ideal number of volumetric constraints, MTQ
or MTB elements will produce non-zero strains and stresses in the
component cells for any set of corner movements. No zero-energy

hourglassing may occur, as it is opposed by deviatoric stresses.

Validation examples for MD procedures in simple plasticity

problems are provided in sections 5.4.1 and 5.4.2.

4.2.3 PREVENTION OF NEGATIVE VOLUMES (MTQC, MTBC ELEMENTS)

One important advantage of CST elements is that no tangling over
may occur without ocassioning negative volumes in the basic cells
(Johnson, 1976). A hypoelastic material will generate resisting forces
that grow towards infinite as the volume tends to zero. This advantage
is lost by ™MD, which accepts zero volume in one cell without
generating infinite resisting pressures, as long as the whole MD group
has a non-zero volume, This may be seen letting the volume of one cell

Cj tend to zero:
if VCJ——9 0
CST: AP = K‘Aegj = K(AVCJ/VCJ) — - 0O
MD 1 AP=K A€y = K(AESjVCj+§€::A5$1V61 )/VE-—éK( AegivCi)/vE
1#] 1#]
(finite)

This fact has a number of undesirable side-effects. Large
reductions in volume are usually associated with large distortions in



shape, causing considerablie numerical errors as the element
interpoiations become ill-conditioned. On the other hand, the critical
time-step will be reduced, increasing the costs greatly. Finally, if
negative volumes occur from tangling over in the mesh, the
calculations will crash. It must be noted that these problems occur
only for special cases with highly distorted Lagrangian meshes.
However they do detract seriously from the robustness of MD procedures

for general applications.

Johnson (1981) has recognized this problem, but his solution has
been an inconsistent use of averaging procedures. For certain critical
portions of the calculations, averaging is switched off, in order not
to incur in overlapping. No explanation is given by Johnson for the
inevitable loss of accuracy, except the convenience of the analyst.

A consistent solution is proposed here using a Mixed
Discretization mesh that recovers the resistance to negative volumes
of CST elements, when for an individual cell the volume tends to zero,
veI->0. This takes the shape of a correction to the averaged
volumetric strain increment (A€y) from eqn. (4.18):

A€l = ach +amin(aeyd,0)vE/ mCl) - 1) (4.19a)
where M is the number of cells in the MD group, and o is an empirical
coefficient (@=0.01 is the recommended default value). This correction

only operates when volumetric strain increments in the smallest cell
of the group are compressive (i.e. cell volume is being decreased).

[t can be seen easily that this correction (egn. 4.19) conserves
the volume weighed average, thus maintaining the consistency of the
*

computations. Calling the new average (AE%)

(aef)=() aefTvtT)/vE= aeframin(aefd,0) (1/vE N LVEVET )/ (mvCT )y CT
(4.19b)

where the second term on the right hand side is null, as VE=§:yCi.

On the other hand, when the cell volume tends to zero the

volumetric strain increment grows asymptotically, producing an
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infinite resistance to tangling over

for VI 0, a€li = aeh ramin(aeld,0)(VE/ (vDI)-11 — -0 (4.20)
For axisymmetric problems, again the correction formula must be
area weighed. In order to preserve the volume-weighed average (eqn.

4,19b) the axisymmetric correction takes the form
A€GT 1= A€l +amin(aeld,0)[AE/ (MACT)-1 4rE/rCT (4.21)

where ch, AEare areas of the individual cells and complete element
er, rtare the radial coordinates of their centroids.

The new elements created by this correction against negative

volumes in MD procedures will be called:

~ MTQC (MTQ corrected) for 2-D;
- MTBC (MTB corrected) for 3-D.

A simple test with a quadrangle, in which one of the component
triangles tends to zero volume, was done to verify the behaviour of
these elements (fig. 4.4)., For Constant Strain Triangles (CST), the
resisting force grows towards infinity when a node tries to cross over
the opposite side. MTQ and MTQC elements display a softer response,
both being nearly identical up to 90% reduction in volume. For further
reductions, the resistance of MTQC elements shoots up steeply towards
infinity, while MTQ allows crossing over (negative volume).

This important result means that the new proposed elements are
capable of accurately modelling incompressible plastic flow, even for
situations with very large distortions, but recover the desirable
resistance of CST meshes to overlapping. Further results using MTQC
elements are presented in sections 5.4, 5.7, and 7.3.4.4 which confirm

this point.
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4.2.4 MASS LUMPING PROCEDURE

The mass in the discrete model is lumped at the grid-points, by
integrating the continuum mass over a volume surrounding each node.
For a Lagrangian mesh, nodal masses need only be computed once, at the
beginning of the calculations. Two conditions must be met by the mass
lumping procedure: firstly the centre of gravity must be preserved for
dynamic calculations, and secondly the volume of integration, for

consistency, must correspond to the surface used when integrating the

stresses (fig. 4.2).

The contribution of acell C to the mass of node 1 is (fig. 4.2):

- Plane stress or plane strain

PVaibg = PtA31bg = PtATm/3 (4.22)
(1/3 of the mass to each node)
- Axisymmetric

PValbg =Pf 21rdA = O(T/58) A n (22ry + Try + 7ry) (4.23)

Aalbg
For 3-D, 1/4th of the mass of every tetrahedron is lumped at each of

its nodes.

4.3 MOMENTUM BALANCE

Having integrated the stresses (eqn. 4.9) and obtained the nodal
masses {(eqns. 4.22, 4.23), balance of momentum is applied locally,
using the integral form of the principle (eqn. 2.28). Note that the
corresponding field equation (Cauchy's eqn. of motion, (2.29))
requires a stronger differentiability, which is not satisfied at the

element interfaces.
Integrating over a small surface s(1) around each node 1,

ull)= Lf onas + ntMg + RO w1 (4.24)
(1)
s

where: R(]> are intensive forces applied on node 1

M(]) 1s the mass lumped at 1.
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4.4 CENTRAL DIFFERENCE‘TIME INTEGRATION

The accelerations are integrated in time with a centred scheme to

provide new values for velocities and displacements:

antl/2 o gn-1/2 | unay (4.25)
uNtloo yn g gntl/2,, (4.26)

Note that all the variables representing rates or increments are
defined at mid-step. The central difference equations (4.25, 4.26)
together with the discretized momentum balance eqns. (4.24), form an
uncoupled system, which may be solved independently for each node in

the mesh.

The numerical dispersion (frequency distortion errors) associated
with a lumped mass idealization and a central difference scheme are of
different signs (Key, 1978), which makes this combination a natural

choice for explicit models.

4.5 CONSTITUTIVE MODELS

Explicit schemes allow a great generality in the constitutive
laws that can be modelled. In principle, any law that can be expressed
explicitly in the following rate form is acceptable:

&= C(E,d, 0,K,T) (4.27)

where: 8’represents an objective stress rate (section 2.5.1)
K is a set of material parameters
T is the temperature
E is Green's strain tensor
d is the rate of deformation tensor.

For the present work, the constitutive laws considered are
elastic-plastic models with Von Mises yield criterion. A hypoelastic
prediction is computed first, and then corrected back to the yield

surface if the yield condition is exceeded (radial return). For a more
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complete study of constitutive laws in explicit Finite Diference

Lagrangian codes, see Herrmann and Bertholf (1983).

4.5.1 HYPOELASTICITY

The basic (predictor) constitutive behaviour is a hypoelastic law

of the type:

81-J- = Ady 874 + 2Gdjy - @(3M426)T5; 5 (4.28)
where A,G are Lame's elastic constants

T is the temperature rate

a i1s the coefficient of thermal expansion

Hypoelastic stresses are computed always as predictors, being
later corrected for otner types of behaviour if needed. All stress and
deformation measures used in eqgn. (4.28) refer to the current
configuration; it produces a linear relation between true stress and
natural strain in a uniaxial test. For large strains (4.28) does not
derive from an elastic potential (hyperelastic). For small strains,

both concepts are equivalent.

4.5.2 PLASTICITY; RADIAL RETURN ALGORITHM

The plastic yield criterion is a stress condition, defining a
yield surface in stress space. The yield criterion depends on the
history of deformation, through the plastic hardening parameters, Q:

F(o,Q) =0 (4.29)
The trial stress from the hypoelastic prediction (eqn. 4.28),

o1 = g + 0¥/ %y (4.30)
is tested with the yield criterion, eqn.(4.29). If F(oP*!)<0 no

correction is necessary:

n+l n+l
£

i}
Q
N
.
w
—
~
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If F(<7E+1)>0 the stresses are returned normally to the yield surface

(fig. 4.5):

o™ = g0l L (pr3)dE (4.32)

Aon+l/2 - 0n+1 _ N

where pis a scalar factor, used for convenience of presentation. The

new stresses must satisfy F(c7n+1) = 0.

This radial return method is due to Wilkins (1964). Other {more
sophisticated) methods for calculating the stress update exist, such
as the tangent stiffness radial return (e.g. Krieg and Key, 1976). A
variation to the radial return method, applying the consistency
condition to the end state rather than 1in a differential sense has
also been proposed by Krieg and Key (1976). Recently, Ortiz and Simo
(1985) have proposed more general "return mapping algorithms", for
arbitrary plastic models and non-constant tangent elasticity tensors.
Results obtained here (e.g. sect. 5.6) indicate that for the small
explicit steps used, even in highly non-linear calculations, the

performance of the simplest radial return method is acceptable.

The rate of deformation tensor is composed of elastic and plastic

parts:

d = d®+ dP (4.33)
The elastic component may be expressed as

gt =1 ¢ + %—L & + 9KTa ] : (4.34)

1] 26 1] kksij

where Sjj are the deviatoric stresses (eqn. 2.59), and K= A+2G/3.

In the following, it will be assumed that the yield surface is a Von

Mises cylinder, with no dependence on hydrostatic stresses. The

plastic correction (4.32) takes place in the deviatoric hyperplane

(o = constant), as gF - of Hence, the volumetric stress-strain
kk )s as 5 = 5F

behaviour is purely elastic:
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Figure 4.5: Radial return plastic stress correction



b, = 3K(dgy - 3Te ) (4.35)

The rate of deformation may be expressed inverting eqn. (4.28):

d:. =1 <E. 4 (4.36)

1J =71

1 (& +9KTa) §
26 E

1J
The plastic rate of deformation is derived combining eqns.
(4.32), (4.33), (4.34) and (4.36):

d® =da-df =1 (sF-§) = p3 (4.37)
26

Hence the return algorithm (eqs. 4.30 - 4,32) implicitly defines a

normality rule for the plastic flow (associativity).

In particular, for a Von Mises yield criterion with kinematic-

isotropic hardening of the type

F= (3/2)(s55 -y - Y2 (4.38)

if the plastic condition is reached (F(0E+1) > 0), the deviatoric
stresses are simply scaled back along the radius of the Von Mises

circle (fig. 4.5):
s eapy = ((sTFH)E - a5/ (1e ) (4.39)
and if the hardening is purely isotropic ( a1j=0):

st = IIhE a8 (4.40)

The plane stress condition ¢33=0 requires special treatment in
the elastic-plastic algorithm. If the material behaves elastically,
plane stress is enforced implicitly by setting (in terms of the

incremental strains, eqns. (4.7), (4.8)):

14

[f plastic deformations occur within the step, an exact one-step
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algorithm enforcing the plane stress condition is not possible (as the
plastic correction is stress-dependent). It may be achieved applying
the following corrections after the radial return (egn. 4.32) 1is

performed:

b'm .= -533

A€, = A0/ (A+2G/3) (4.42)
Aejj := Aejj *+ (1/3)(a€] - A€,)0;

where: @, = (1/3) 0y, , mean stress
A€Y) = predicted volumetric strain

This correction implies a very slight volumetric non-associativity,
n+l _ n+l.E .
o™ = (afthE (14 B) (4.43)

which has no effect for deviatoric plasticity criteria (e.g. Von
Mises).
4.5.3 HARDENING AND UNIAXIAL STRESS-STRAIN LAWS

Plastic strains give rise to material hardening. For a kinematic-
isotropic Von Mises model (eq. 4.38) the hardening is composed of a

kinematic translation (ajj and an isotropic expansion (Y) of the

yield surface:

(4.44)

where aeP f\/g Ae$j Ae?j (effective plastic strain increment)
3

hy and hy are the kinematic and isotropic moduli respectively

fhe plastic hardening modulus in uniaxial tension is
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h' = hg + hy (4.45)

If h, =0, hardening is purely isotropic; if hy = 0, it is purely

kinematic.

Uniaxial stress-strain laws may be defined as the true axial
stress - natural axial strain curves in uniaxial tension tests (sect.

6.2):
o= f(€) (4.46)

where the notation o= o01], €= €]1 has been used, Decomposing the

differential strain increment into elastic and plastic components,

E

de = det + deP = do(1/E + 1/n") (4.47)

the total stress-strain modulus may be expressed as

h=4do = __ 1 (4.48)
de 1/E+1/n"

Uniaxial stress-strain laws are convenient for specifying
isotropic material behaviour. A few examples of laws used within this

work are given in fiqure 4.6.

The yield condition may depend also on the strain-rates and the
temperature, which provide additional sources of hardening (or

softening, as the case may be):
Y o= Yo(e )t (. ) I(T) (4.49

Functions fp (strain-rate dependence) and fy (temperature dependence)
may be defined as piecewise linear laws. A useful analytical form for

fr is (Bodner and Symonds, 1960):
fRIET) =1+ (/)" (4.50)

where m and B are material constants. Egqn. (4.50) is equivalent to a
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viscoplastic idealization such as suggested by Perzyna (1963) or Owen

and Hinton (1980):

= Y<(F/Fy-1)N> OF (4.51)
do
where: F, and F are the static and dynamic yield conditions resp.;
<A> = A for A>0,
<A> = 0 for A<O.

Equivalence between egns. (4.50) and (4.51) is achieved by assigning

the values
= 1/N

4.5.4 OBJECTIVE STRESS RATES

Rate-type constitutive equations (4.27) need to be formulated in
terms of objective stress rates (section 2.5.1). Jaumann and Truesdell
objective rates have been implemented incrementally in the following

way :

Jaumann rate of Cauchy stress

yntl/2 _ n+1/2 gntl n+1/2 n+1 n+1/2 (4.52)
73j 713 1p Ypj JP "pi :

Truesdell rate of Cauchy stress

gntl/2 o gn+l/2 _ on+l n+l/2 oN*l n+1/2 + gNTLyn*L/2
1J 7] “ip Vi,p Tip Vi,p 713 Vp,p
- vntl/2 _ n+1 ntl/2 _  n+lyn+l/z2 _ n+lyn+l/2
13 p"dpj “3p dpi 13 9pp (4.53)

Other vectors or tensors (e.g. o , egn. 4.44) Tinked to the
material frame must also be corrected for rigid body rotations. For a
vector T, a corotational rate equivalent to eqn. (4.52) is defined by

v .
ORVEIR L Wle/ZTB (4.54)
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Note that there is half a step lag for the values of stresses in eqns.

(4.52) - (4.54). For explicit integration in which steps are very
small errors introduced by this will not be important (sect. 5.6). For
larger implicit steps, more rigorous algorithms have been proposed by

Hughes and Winget (1980), Pinsky, Ortiz and Pister (1983), and
Rubinstein and Atluri (1983).

Jaumann's rate is the most commonly used formulation, being a
natural choice for removing rigid body rotations (Prager, 1961). Some
inconsistencies may arise however in large deformation simple shear
with kinematic hardening (Nagtegaal and de Jong (1982), Dafalias
(1983), Lee and Mallett (1983)). On the other hand Truesdell's rate is
the forward Piola transformation of the rate of 2nd Piola-kirchoff
stress and provides a "canonical" form for hyperelastic rate equations
(Pinsky, Ortiz and Pister, 1983).

Both Truesdell and Jaumann rates can be made equivalent by
appropriate definition of the constitutive tensor {eqn. 3.28). The
classical elastic-plastic relations (Prandtl-Reuss eqgns. (2.64)) are
expressed in terms of true stress and true strain (Hill, 1950). The
assumption is made here, as by Hibbit, Marcal and Rice (1970), that
the Prandtl-Reuss equations are referred to Jaumann rates of stresses.

4.6 DAMPING

The semidiscrete equations of motion (4.24) may be assembled in
matrix form for the complete model, and generalized to include viscous

damping:

Mi +Ci +P =R (4.55)

where M is the diagonal mass matrix, C is the damping matrix, and P, R

represent internal and external forces respectively.

Auseful form for the damping matrix is the so-called Rayleigh

88



89

damping:

C = AM + BK; (4.56)

where: Kt 1S the tangent stiffness matrix, Kt=dP/du
A, B are the mass and stiffness damping coefficients.

Rayleigh damping allows egns. (4.55) to remain uncoupled, and
therefore is easily implemented in an explicit code. Mass damping is

integrated into the time-marching scheme (egns. (4.25), (4.26)) by the

following operator:

b”+1/2 _ [d”‘l/z(l—AAt/Z) + M“l(Rn-Pn)AtJ/(l+AAt/2) (4.57)

which implies a modification of the time-~integration eqn. (4.25).
Stiffness damping is considered by adding viscous force terms to the

internal forces:

P = PN+ By"dP"/du (4.58)

approximated in finite difference form by

P = p" 4 BaP /8 pt

Stiffness damping is considered by substituting PN in egn. (4.57) by
pn,

The amount of damping provided by (4.56) is a function of the
frequency. If the system of egns. (4.55) is put in modal form
(assuming tangent linear behaviour and small disturbances), one
equation of the following type is obtained per mode:

X+ (A+B wl)x + wlx = r (4.58)
where x is the modal amplitude and w the frequency of vibration. The

amount of damping for each frequency w is given by

= (A/w + Bw }/2 (4.59)



where p=1corresponds to the critical damping. From eqn. (4.59) it
may be seen that the effect of mass damping is small for high
frequencies, where stiffness damping is important, and viceversa. Mass
damping may be likened to dashpots connecting each degree of freedom
to ground, and stiffness damping to dashpots between connected nodes.

4.7 STABILITY OF TIME INTEGRATION

Fourier methods (e.g. Richtmeyer and Morton, 1967) may be used
for studying the stability of linear systems and small perturbation

tangent behaviour in nonlinear systems. The differential modal egns.

(4.58) may be rewritten as
X + 2Bwx + wlx = 0 (4.60)

from which the external forcing function (r) has been dropped. The
harmonic solution to this equation is

x" = eMnat - an (4.61)
where ¥, A are complex numbers (note the superscript on A is an
exponent). Substituting eqn. (4.61) within central difference egns.

(4.25 - 4.26) one obtains

XN = ("hoax +x"7h)/at? = A71(a2-2a41)/at2

(4.62)
M= M1y a2 AN1(4201) 24t
which with eqn. (4.60) yield
2R(1+atwp) + aw? At2-2) + (1-Atwp) = O (4.63)

for stability, the solution A to this equation must be complex and of
modulus not greater than 1. These conditions impose

t < 24/1-82
at < Z4f1-p (4.64)
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The second condition must be satisfied for all the frequencies
present in the model. As damping is usually small, a sufficient
condition will be

At < 24/1-p2 (4.65)
wmax

Damping has an adverse effect on stability, although stiffness
and mass damping behave differently in this respect. Considering that
the condition (4.65) applies for the highest frequency of the model,
from eqgn. (4.59) it may be seen that mass damping will virtually have

no effect, while stiffness damping may be very detrimental.
For undamped motion ( B =0) the critical time-step reduces to
At < 2/ wpay (4.65)
An upper bound expression for the critical time-step is given by the
Courant criterion (Courant, Friedrichs and‘Lewy, 1928), which limits

the time-step to the interval necessary for the stress-waves to travel
across one element,

At < hgsinse (4.66)

where hpin 1S the minimum element dimension, and ¢ the maximum stress-
wave velocity. For an elastic-plastic material the fastest stress
waves are the compressional or "P" waves, for which ¢ = 1KA+2G)/P .

4.8 MODELLING OF CONTACTS

Contact between different boundaries of one or more continua is
frequent in impact modelling and imposes special nonlinear boundary
conditions. Two main aspects are involved in contact modelling: the
contact interface laws and the detection of interacting surfaces.
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4.8.1 CONTACT INTERFACE LAWS

A penalty method is used for the contact laws, consisting of
placing interface springs between “intruding" nodes and "target"
surfaces. Forces generated by these springs will act on both sides of
the interface. For complete symmetry of the logic, both sides of the
interface may be taken in turn as "intruding” sides. The interface

laws are

kNgN

- Normal force: FC
(4.68)

- Shear force: Fé = min(K3d3 Fgﬁt)

where KN, Ksare the normal and shear stiffness values
dN, dsare the normal and shear penetrations
u is the coefficient of friction

The shear law defines a kinematic slip circle of radiusl% “/K 3

Note that the penetration d is a vector linked to the Lagrangian frame

and therefore must be updated with a corotational formulation (eqgn.

4.54),

An important detail of the formulation is the value used for the
contact stiffness. Marti (1983) uses a constant user-defined value for
the whole model, which should be of similar magnitude to the element
stiffness., This method is simple and appropriate for uniform 3-D
meshes, but problems will arise for non-uniform or axisymmetric
models. Hallquist (1982) computes a different stiffness for each
contact, proportional to that of the target element.

In this work, the contact stiffness varies for each contact,
using a simple but effective method. The stiffness is calculated for
each contact as

K = kMI/Até (4.69)
where M is the mass of the intruding node

At. is the critical time-step for the model (eqn. 4.66)
k is a coefficient normally defaulted to 0.1 (Larger values may
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cause instabilities if a corresponding reduction is not used for

the computational time-step)

This form for the contact stiffness ensures a value below the
maximum element stiffness in the model (thus not compromising
stability) and above the stiffness of the element in contact (thus

avoiding unacceptable penetrations):

- maximum element stiffness - KM3X = (1/4)Vcr.(/1+2G)/hn%1n
- contact stiffness - K¢ = 2chr(A+ZG)/h§1n
- interface (target) element stiffness - Kl = (1/4)VT(A,+ZG)M%1n

where Vcr is the volume of the element giving the critical time-step,
and VT that of the interface target element.

This derivation of the contact stiffness also produces a uniform
"push-back” recovery action along the contact interface, which is
important specially for axisymmetric models, where the element
stiffnesses and masses are radius dependent. This may be shown by
considering the accelerations at the intruding side (aI) and target
side (al) for a given penetration d:

1]

Fo/mt = Kkd/atl

1]
i

(4.70)

[=Y]
il

Fo/M' = (kd/atd)mi/mT)

Assuming the mesh is uniform on both sides of the interface (Ml mT=1),
for symmetric (double) contacts the recovery of the penetration in one
time-step will be

dy = 2(1/2)(al + a")at? = k n2d (4.71)

where At=7nAt. is the computational time-step (7 <1). The mesh can be
non-uniform along the contact interface, but should generally not be

too different accross it (MTA'MI). The frequency of the contact spring
connecting MT and MI will be proportional to

(k/at2) ml/mT
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Large ratios mi/mT will require reductions in the computational time-

step.

For high velocity impact in which large contact pressures are
produced, the contact stiffness may have to be scaled up by changing
the default value of k in eqn. (4.69), in order to avoid unacceptably
large penetrations. This would again require a corresponding reduction
of the computational time-step.

Application of egns. (4.68) requires definition of a normal to
the contact. For this purpose, contacts are classified as node-node or
node-side (fig. 4.7). For node-side contacts, the normal is directly
that of the target side. For node-node contacts, the normal fis
computed by averaging those from the two adjoining sides,

Finally lies the question of distributing the contact force on
target and intruding surfaces. On the intruding surface the sole
recipient is always the intruding node, but for the target side
force distribution depends on whether contact is of node-node or node-
side type. For node-node contacts the interface force is assigned
entirely to the target node. For node-side contacts the interface
force is distributed to the two nodes in the target side, in inverse
proportion to their distance to the intruding node.

A flowchart of the computations for determining the normals,
penetration and contact forces is given in figure 4.8,

4.8.2 CONTACT DETECTION ALGORITHM

Detection of new contacts and book-keeping for the lists of
active contacts must be performed in an efficient and reliable way to
provide robust models for impact and sliding. In the present 2-D model
a contact is established and kept if the intruding node either

a) penetrates the target side (non-zero interaction force)
b) projects on the target side without penetrating, lying in either of
the node-side or node-node areas (fig 4.7) (zero interaction force)
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A completely general capability for automatic detection of new
contacts (i.e. any node of any external surface with any other
surface) would generally carry an excessive computional overhead. Two
intermediate procedures have been implemented here for the detection

of contacts:

- New interactions near an existing contact will be detected
automatically, by checking in every step the neighbours to all
existing contacts. Element adjacency lists are kept in the program
memory for this purpose. All contacts within one interface area will
be picked up by giving just one seed contact. A contact search
algorithm has been included which finds the correct target side from

an incorrect guess.

- For Automatic detection of new contacts, areas that may touch at an
unknown instant may be earmarked by specifying lists of nodes, which
will be checked against each other for contact at each time-step. In
fact, these areas may encompass the whole external boundary of the
bodies involved, if the location of contacts is totally unpredictable
beforehand, although this will normally carry a large overhead in the

computational costs.
Sliding of existing contact areas is achieved by checking, prior
to relinquishing a non-active contact, if the intruding node has slid

to any of the neighbouring target sides.

Flow-charts for the contact calculations with the search and the

book-keeping logic are given in figures 4.9 and 4.10.

4.9 HEAT CONDUCTION

Heat flow rates accross the continuum are computed from Fourier's

law:

AR S (4.72)

where h; is the rate of heat flow in direction i per unit normal
surface, K the conductivity, and 1 the temperature. An explicit Euler
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forward integration scheme is implied in egn. (4.72).

For a small region the rate of heat inflow into it may be found

by integrating over its surface S,

H+/2 o -jKTT1 n;ds (4.73)
S
which may be particularized for a triangular or tetrahedral cell as a
sum over the cell faces:
m
H = (1/m>ZKJ'sJ'<TJ'—T>/(dJ-d> (4.74)
j=1
where m = no. of sides (3 triangle, 4 tetrahedron)
Kj, Sj are the conductivity and surface of side j
dj,Tj are the height of and temperature at the cell adjoining j
d, T are the height and temperature at the current ceill.

For boundary faces, the contribution to the sum in egn. (4.74) is
calculated according to the appropriate boundary condition:

H
"

- Dirichlet  T® = Const., HJ = mk(T®-T)sd/d (4.75)

Const., HJ = nesd (4.76)

- Neumann h®
- Mixed  T®/Cp +h8/c, =1, W) = mKSI(Cp-T)/(d+kmCr/Cp)  (4.77)

Other sources of heat such as plastic work must be considered
when formulating the energy balance (eqn. 2.32), to compute the

temperature increments in each cell:
AT = L(Hat +¢o:ae™VC)/pvC + aqu/cy (4.78)

where: ¢ defines the amount of plastic work transformed to heat,
(defaulted to 0.95)
V¢ is the cell volume
pis the mass density
AQ is heat generated from other sources per unit mass
Cp is the specific heat
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- For an Euler forward time integration scheme (eqn. 4.72),
computations are conditionally stable. For a rectangular mesh, the
critical time-step for stability is (Richtmyer and Morton, 1967):

ate = (1/2)(1/ax® + 1/ay%) 1 (K/ pCp) (4.79%)

For triangular and tetrahedral meshes, empirical results obtained in
this work suggest the following critical time-steps.

c

- Triangles:  atc= (1/8)h3in / (K/pCp) (4.79b)
- Tetrahedra: Atc= (1/12)hi, / (K/pCp) (4.79¢)

4.10 ENERGY COMPUTATIONS

Explicit schemes such as central difference are only
conditionally stable. In a linear system, an instability is readily
detected, as it will cause overflow in the computations within a few
cycles. Unfortunately, this is not the case generally for non-linear
materials. Instabilities are associated with spurious release of
energy. Plastic materials may absorb the spurious energy through
plastic deformation, whereby instabilities could go unnoticed even
though large errors may be present. An energy balance check (as
recommended by Belytschko (1978, 1983)) has been implemented in order
to detect "arrested" instabilities.

At every instant, Energy balance dictates
Wint * Ugin - Wexg = 0 (4.80)
For checking eqn. (4.80), Wp,¢ (internal energy), Ugijn (kinetic
energy) and wEXt(external energy) are followed during the

computatiqns. The algorithms for these energy computations are given
below. Note that some energy components are computed incrementally,

WL C 4 ayntl/2

while for others the total vaiue W" is recomputed at each step.
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Internal Energy

Internal energy is composed of continuum energy (l), damping
energy (II), and energy in the contacts (III):

Wint = Wp * Wpp + Wigg (4.81)
- Continuum energy is computed incrementally as

NUMNOD
a2 = (at2) f(0n+0n+l)=dn+1/2dv = (1/2)ZA“'|\1+1/2(PN“PN+1) (4.82)
N=1
Where P are the nodal forces, obtained by integrating the continuum
stresses (eqn. 4.9). For elastic-plastic materials the continuum
energy may be decomposed into elastic and plastic components:

Wp = Wgp + Wpy

a2 = (ar/2) [ (oM o) ()14 2ay

(4.83)
n+l/2
AWE] /

n

(At/2)f(0"+ 0n+1):(dE)n+1/2dV

For an isotropic elastic Von Mises model the expression for the
plastic work may be simplified to

awpt/2 = (At/Z)_f( Oaq* 0251) éPav (4.84)

where Oéq = 1K3/2)s:s (Von Mises equivalent stress).
- Damping energy increments are computed as
NUMNOD
a2 < (1y2) E Al 20 a2+ (pRFLpRB 2ty (4.85)
N=1

- Energy at contacts consists of potential energy stored plus
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dissipated frictional energy:
NUMCON
Wi = (1/2) g [k§(df)2 + KS(dd) 2] + Wy (4.86)
J=1

n _ n n n
AWpey = Fy (dso - d5)

where dgo-dg represents the slip (predicted minus corrected shear
displacement). Subscript N here indicates Normal (penetration or
stiffness)

Kinetic energy

NUMNOD
= (1/8) E (@Rt 24 431122 (4.87)

[
3
-t
pes

I

External work

NUMNOD
a2 = (172) E auy(FR + I} (4.88)
N=1

For computations carried out on a CRAY-1S with around 10° time-steps
and 500 cells, the errors in matching energy balance (eqn. 4.80) have
normally been lower than 0.005%Wpy{. The same computations on a
VAX11/785 have had errors lower than 0.15%Wgxt-

4.11 IMPLEMENTATION INTO FORTRAN PROGRAM

The algorithms described in this chapter have been implemented
into a Fortran77 computer program (Goicolea, 1985a). The program
contains some additional facilities not described here, such as rod
elements.(e.g. for modelling bolts, reinforced or prestressed
concrete). Some effort was taken to make the program user-friendly,
allowing a flexible structure for the input, free format command
interpretation, some mesh generation facilities, and sensible defaults

for non-specified parameters. User-friendliness was important for two
reasons:
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- The program has been used as a production code for non-linear and
impact engineering analyses (e.g. Principia Mechanica Ltd.(1983),
Dostal, Phelan and Trbojevic (1985))

- Extensive application of the program has been done within this
thesis (Chapters 5,6,7).

A restart facility is available, which permits the computations
to be recommenced from predetermined “saved" instants. It also allows

recovery from a system crash or forced halt.

Qutput files with histories of monitored variables, deformed
geometries, and stress/strain components for contour plotting are
produced. These files can be input to post-processors such as PRZDPL
(Goicolea, 1985b), CURVA (Goicolea, 1985c) and PRISM (Principia
Mechanica Ltd., 1984). PRISM can also act as a pre-processor

generating meshes.

Program development was done initially on a CDC7600 and later on
a CRAY-1S of the University of London. Minor parts of the code have
been vectorized for the CRAY, but a more thorough effort in
vectorization was not considered necessary for the present research
work. As it is, the performance is about 15000 cellsXcycle per CPU
second. On a CDC7600 the program will run approximately 50% slower, on
a PRIME750 40 times slower, and on a VAX11/785 20 times slower.

Definition of the problem, time-cycle computations, and
redefinition may be specified in a flexible way within certain rules
(e.g. material properties and mesh must be defined before the time-
cycle computations). A typical problem sequence is indicated in fig.
4,11, The flow-chart for the time-cycle computations is given in fig.
4.12.

103



104

START

- Geometry (Mesh)
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f

Output: Printer Plots, Output Files,...]

STOP

Figure 4.11: Typical sequence for explicit numerical modelling job
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Figure 4.12: Flowchart for explicit computational cycle
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5.1 INTRODUCTION

The purpose of this chapter is to present a number of
representative benchmark tests, validating the Finite Difference
techniques used in this work. Most of the tests have been chosen with
available analytical solutions to compare with, but for some the
comparison can only be done with other numerical results reported in

the literature.

The features tested concern primarily the Elastic-Plastic
mechanical behaviour of continua. This includes mainly dynamic tests
(both wave-propagation and inertia-dominated types), although some
quasi-static problems are also solved using dynamic relaxation. A
simple heat conduction test provides a check for the thermal

capabilities.

No tests are presented for thermo-mechanical coupied problems, as
further application work on the topic was not done for this thesis.

This leaves some scope for further work on the matter.

5.2 WAVE PROPAGATION

A few examples of wave propagation problems are given here. The
first three concern the propagation of waves along a bar in response
to the sudden application of a body force. An example of the
transmission of waves in an Elastic-Plastic material with hardening is
given next. Finally, the behaviour of stress waves in a conical bar is

examined with an illustrative example.

5.2.1 ELASTIC WAVES IN BARS

Three problems are presented in this section concerning the
propagation of elastic waves in bars. The bar dimensions are in all
cases lmxlmx20m, and the common mesh utilized in the analyses consists
of 20 quadrilaterals of lmxlm (fig. 5.1) (each quadrilateral is

composed of 2 triangles). The material properties are as follows:
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p = 2000 Kg/m
E = 13.2x108Pa
v = 0.31

Im x Im x 20m

aravity
force

777777777777

Figure 5.1: Mesh used for models of wave propagation in bars
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Density _ p = 2000 Kg/m3
Elastic modulus E = 1320 MPa
Poisson's ratio v = 0,31

The bars are initially at rest, stress-free and fixed at one end.
A body force (gravity) of unit value is then applied suddeniy. This
creates a wave pattern as the pulse rebounds and travels back and
forth along the bar. The period of this wave is

T =4L/c (5.1)

where L is the length of the bar and ¢ the velocity of propagation.
The maximum point velocity attained should be

v = gL/c (5.2)

where g is the gravity force applied.

Constrained P-waves

If the nodes are constrained to move only paraliel to the axis of
the bar and in plane strain, the velocity of propagation is that of a
plane compressional wave in an infinite medium:

—V(A+ZG)/P (5.3)

966.2 m/s

Cp

Theoretical and numerical results showing the velocity histories at
the free tip and mid-point of the bar are presented in fig. 5.2.

Unconstrained P-waves

In this case the bar is allowed to expand laterally, being
modelled in plane stress. The wave velocity is that of a one-
dimensional bar,

VEre (5.4)

811.5 m/s

¢o

109



110

The resulting velocity histories are given in fig. 5.3
Shear waves

The body force will now be normal to the axis of the bar. To
prevent bending from developing, the nodes are constrained in the
longitudinal direction; this way, the distortion is resisted only by
shear stresses. The velocity of wave propagation is:

Cg =1/G/p (5.5)

= 500 m/s

Results for this case are given in figure 5.4,

5.2.2 ELASTIC-PLASTIC WAVES

Let an unconstrained rod of Elastic-Plastic material, with linear
strain-hardening, impinge normally upon a rigid flat anvil, giving
rise to a stress higher than the yield value Y. An Elastic and a
Plastic wave are originated and propagate simultanecusly through the
material. the theoretical solution to this problem has been discussed
by Johnson (1972).

The bar is again of dimensions lmxlmx20m, and the same mesh from

fig. 5.1 is used. The remaining parameters are:

Elastic modulus E = 6400 Pa
Yield stress Y = 40 Pa
Mass density p =1 Kg/m3
Elastic-Plastic modulus H = 640 Pa
Impact velocity v =1m/s

The elastic wave will travel at a speed of

Co =1/E/P = 80 m/s

while the Plastic wave lags behind with a velocity of
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C1 =4H/Pp = 25.3 m/s

The Elastic wave is reflected from the free end as an unloading wave.
As it returns along the bar it will meet the oncoming plastic front at
a certain instant t1»> @t @ point defined by its distance from the

impacting end, X71:

121 2L/(c0+c1) = 0.38s

X1 (2C1/C0)/(1+C1/C0) = 9.61m

From this point elastic waves are reflected back into each part of the
bar; these waves continue to travel and rebound succesively. The
plastic strains extend only to the region x<xj,

In the calculations, appreciable plastic strains occurred only
for the first 10m of the bar, as predicted. A time history of stress
at a distance x=4.67m is shown in fig. 5.5. This point sees the
passage of the elastic front, and then the plastic front. After that,
elastic rebounds create further fronts.

5.2.3 ELASTIC WAVES IN CONE

Experiments on conically-tapered Hopkinson bars show that
compressive stress-waves create a tension tail, which makes the bar
move backwards as the time-piece is thrown off. Landon and Quinney
(1923) first analyzed this phenomenon, assuming an exponential form
for the applied pressure pulse, typical of an explosive charge. Kolsky
(1953) has presented the theoretical analysis in a revised form. The
pulse is given by a displacement law of the form

u = (A/r)exp[(-r-cqt)/Bl - (A/r) (5.6)

where r is the distance from the apex of the cone and t the time. t=0
corresponds to the arrival of the head of the pulse at the apex, t
being negative whilst the pulse is travelling towards the apex. Egn.

(5.6) holds for negative values of t, where r > Jcot]. For r < lcQt|
the displacement is zero. B is the characteristic length of the pulse,
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while A defines the amplitude. co is the bar wave velocity (eqn.
(5.4)). ‘

The stress associated with this pulse is:

g

~(AE/Br)exp[(-r-cgt)/B1 + (AE/r2)[1-exp[(-r-cot)/B) (5.7)

The right-hand side of egn. (5.7) consists of two opposing sign terms,
the first always negative (compressive front) and the second positive
(tension tail). The following may be noted:

- the peak compressive stress increases as the wave approaches the
apex (proportional to -AE/Br);

- the length of the compressive portion decreases correspondingly;

- a tension tail is left, which sufficiently behind the head of the
pulse approaches AE/r2 in magnitude.

A conical bar of end radii 6émm and 60mm, and length 2000mm, was
modelled numerically with a graded mesh of 4x150 quadrilaterals (fig.
5.6). Material properties were typical of Aluminium (E=67Gpa,
P=2700Kg/m3, c0=4981m/s). The pulse input was given as a velocity
history at the wide end, derived from eqn. (5.6). Amplitude of the
pulse was A=1.3382x10-4m2, and the length B=0.300m.

The numerical results compare well with the analytical stress
profiles (fig. 5.6). Predictably, the extremely sharp peak at the
wave front is blunted somewhat, and some dispersion is introduced
behind it. Part of this 1is attributable to the surface waves produced
in the axisymmetric model.

5.3 VIBRATION OF A CANTILEVER

The motion of a vibrating cantilever is a problem that may be
readily checked with elastic beam theory. A mesh of 4x21
quadrilaterals is used to model a vertical cantilever clamped at the
top end (fig. 5.7a). It is set in motion by giving the bottom right
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hand node a velocity of 10m/s during 0.05ms. It is then left to

vibrate during lms. Material properties are

Density p = 7720 Kg/m3
Elastic modulus E = 213.4 GPa
Poisson's ratio v = 0,311

Figures 5.7b and 5./c show the maximum positive and negative
displacements, exagerated 10 times. Displacement histories of points

at the tip and middle of the beam (fig. 5.8a) show the dominance of
the flexural fundamental mode of vibration in the response. This is
also notable in the frequency spectrum at the tip, shown in fig. 5.8b,
where the first three (theoretical) natural frequencies of a flexion-
only beam are shown as well for comparison. For the first frequency,
the coincidence with the theoretical value is remarkable. Some
discrepancy exists for the second and third modes. This is expected
from the fact that the theoretical frequencies do not take into
account shear or finite deformation effects. This problem has been
analyzed previously by Wilkins (1969) with substantially the same

results as here.

5.4 STATIC ELASTIC-PLASTIC PROBLEMS

Two classical problems of static plasticity are solved in this
section. As discussed in section 4.1, the explicit Finite Difference
code lacks the ability to perform static analysis directly. The static
solutions are reached through dynamic relaxation. The vibrations are
damped out with the use of viscous damping, and the forces (or
displacements) are applied gradually. Some "overshoot" in the
solutions is unavoidable for plastic materials, although it can be

minimized by proper use of damping and slow loading rates.

5.4.1 PUNCH TEST

The case of a semi-infinite body indented by a frictionless, flat
rigid punch, under conditions of plane strain, was solved originaily

by Prandtl (1920), using shear line theory. The plastic collapse
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pressure is constant and equal to
o= L(2+n )/ V31 v = 2,97y (5.8)

Numerically, the half-space is discretized rather crudely (fig.
5.9), modelling only a finite rectangular portion, with displacements
at the boundary constrained in both directions. Prescribed velocities
are given to the nodes under the die. The material properties are

Elastic modulus E = 100 Pa
Poisson's ratio v=90,3
Yield stress Y = 0.01 Pa

For this problem, a mesh of constant strain triangles does not
give a satisfactory result. Not only does it overestimate the collapse
pressure, but the load grows monotonically, failing to achieve a limit
value {fig. 5.9), in direct contravention of the 1imit theorems of
plasticity. The reason for this is the inadequacy of these meshes to

model incompressible plastic flow, as discussed in section 3.7.1.

The Mixed Discretization procedures advocated here (sections
4,2.2, 4.,2.3) do provide a satisfactory solution (fig. 5.9). The
slight overestimation is due to the coarseness of the mesh and the
total constraint at the boundaries. This problem was solved using the
CMTQ quadrilaterals proposed in section 4.2.3, thus proving that the
modifications introduced in these to prevent negative volumes do not
stiffen these elements up for ordinary situations with small or

moderate strains.

To achieve the solution, a relaxation process was used. Mass
density (fictitious) was taken as 0.1 Kg/m3, and full Rayleigh damping
was used, with 1% of critical damping at 1 Hz. The relaxation process
was followed for 10 seconds (458 steps). The prescribed velocities at

the die were applied gradually during the first second.
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5.4.2 ELASTIC-PLASTIC SPHERE UNDER INTERNAL PRESSURE

When a thick-walled spherical vessel is subjected to growing
internal pressure, a plastic zone starts to develop from the interior.
There is a range of pressures for which contained plastic flow is
achieved, defining a plastic zone and an elastic outer zone. The
theoretical solution (e.g._ﬂi}li 1250) defines the radius c of the
plastic zone from )ﬂ?uéﬁ

p = 2YLn(c/a) + (2Y/3)(1-c3/b3) (5.9)

where p is the pressure, a the internal radius, and b the external

radius.

The stresses in the elastic zone (c<r<b) are given by

Do s
L(03/r3-1)2vc3/303 = - 2¢ (_é_ -4)

0. = =
’ 365 V7 (5.10)
0, = (b3/2r3+1)2vc3/3p3 _ 2YCP 45 )
.553 v o
and in the plastic zone (a<r<c) by
op = =2YLn(c/r) - 2Y(1-¢3/b3)/3
(5.11)
Og=Y + Op

Numerically this problem was solved discretizing a 30 deg.
axisymmetric sector, with a mesh of 10x8 CMTQ quadrilaterals (fig.
5.10a). The material parameters were

Elastic modulus E=1

Poisson's ratio v = 0,2

Yield strength Y = 0.83588x1073
Density p=1

With a=1, b=2 and an applied pressure of p=10-3, the plastic zone
extends to c=1.5 exactly (eqn. 5.9). The calculated profiles of radial
and hoop stresses (fig. 5.10b) show an excellent agreement with
theory. Only a small difference is present in the peak of the
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circumferential stresses at the plastic boundary, due to the crudeness
of the mesh and the stepwise representation of stresses in the model
(constant strain elements). As a check, calculated circumferential
stresses in the sphere are provided in both in-plane and out-of-plane

directions, showing excellent agreement.

To achieve the solution, a dynamic relaxation process was
followed for 40s, with mass damping 50% of critical at 0.08 Hz. (782
steps). The load was increased gradually to its final value in the
first 30s.

5.5 HEAT _CONDUCTION

The numerical procedures described in chapter 4 have the
capability of performing purely mechanical, purely thermal, or
simultaneous coupled thermo-mechanical calculations.

5.5,1 COUPLED THERMOMECHANICAL ANALYSIS

The complexity of the mathematical description of general coupled
thermomechanical systems, in which the heat is generated by p]qric
flow, accounts for the fact that analytical solutions are not readily
available in this field. As on the other hand thermomechanical
applications were not intended for this work, no validation example is
presented here as such.

However, the mathematical model for thermomechanical coupling has
been derived and implemented by the author, both in the 2-D program
"developed for this thesis, and in an existing 3-D program (Marti,
1981, 1983). A 3-D application of this work has been published
elsewhere. (Marti, Goicolea, Kalsi and Macey, 1984), which concerns the
extrusion of an aluminium disk with an irregular die. Very severe
plastic distortions are achieved in the process, producing increases
in temperature.
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5.5.2 TEMPERATURE REDISTRIBUTION IN A SLAB " 1T’"‘ by
‘ N - L v =
A thermal-only analysis is performed for an infinite slab,
initially at a uniform temperature T=1, and cooled down by keeping the
ends x=-L and x=L at T=0. The problem parameters are

—
half thickness L =20
Conductivity K=1
Density p=1
specific heat Cp = 1

Calculated temperature profiles for various times are compared
with theoretical values in fig. 5.11, showing excellent agreement. A
time-step of 56. 25ms was used for the analysis, with a mesh of 401}

triangles. The theoretical solution was obtained by Four1er series
analysis (e.g. Carslaw and Jaeger (1947), p83).

5.6 LARGE STRAINS AND ROTATIONS

A Quadrilateral subjected simultaneously to a finite rigid
rotation and a simple axial extension (i.e. lateral movement
constrained) is considered here. The purpose of this example is
principally to check the objectivity of the integration algorithm.

The material behaviour is described by a hypoelastic law (egn.
4,28), involving the Jaumann rate of Cauchy stress:

v
o= C:d (5.12)

Calling 6(t) the rigid rotation at time t, and A(t) the axial
stretch ratio (L(t)/L) in the rotated coordinate frame, the two normal
stress components may be obtained analytically by integrating eqn.
(56.12):

a1y cos?0 sinZy (1
= E(l-v)LnA /[(1+v)(1-2v)] (5.13)

0y9 sin%e cos20 v
=7
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A full 360 deg. rotation with a final stretch ratio of 2 was performed
(fig. 5.12), the numerical results agreeing closely with theory. A
large number of time-steps - 1824 - was used for the calculation,
which could have been reduced without affecting significantly the
accuracy of the results. However, this is a realistic situation for
explicit calculations, where time-steps must be very small for reasons
of stability. The simple Jaumann rate algorithm (eqn. 4.52) provides
excellent results, without needing the more rigorous procedures
necessary for larger implicit steps (Hughes and Winget (1980), Pinsky,
Ortiz and Pister (1983)).

5.7 IMPACT OF CYLINDER

The impact of a solid cylinder against a rigid stonewall is a
problem in which the final shape is sensitive to the plastic
properties of the material. Wilkins and Guinan (1973) used tests and
numerical analyses of such impacts to calibrate the plastic material
behaviour. Here, the impact of a copper cylinder is described. This
problem has been analyzed by Hallquist with NIKE2D (1979), DYNAZ2D
(1982a) and DYNA3D (1982c), and by Johnson (1981).

Impact velocity is 227m/s. A simple Elastic-Plastic Von Mises
idealization with linear isotropic hardening is used for the material.
The dimensions and material parameters are given in figure 5.13a.

The mesh comprised 50x5 CMTQ quadrilaterals and was severely
distorted as a result of the impact (figs. 5.13b, 5.13c). The first
part of the deformation (40 microsec.) ocassions a flattening of the
impact end into an elephant's foot. The latter part (till 80
microsec.) produces a barreling upwards of the bar, as the bottom part
has become very hardened by then. The cylinder starts to rebound after
79 microsec. (velocity histories in fig. 5.14), in agreement with
Hallquist's results. Note that for this problem the nodes at the
impacting end were fixed in the axial direction. Although a stonewall
boundary condition (permitting separation) would have been more
realistic, the outer edges tending to 1ift slightly, this simpler
idealization was adopted for compatibility with Hallquist's results.
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Results from various calculations are presented in table 5.1,
giving the deformed length, bottom radius, and maximum effective
plastic strain (achieved always at the bottom centreline ceil). The
results obtained here using CMTQ or MTQ elements compare well with
Hallquist's results. Mesh distortion, although large, is quite
uniform, and MT(Q elements behave well here. As predictabie, the
response of CST elements is poor. Also presented in table 5.1 are
results from Johnson (1981); two different types of crossed triangle
layouts are seen to provide better results than CST elements, but
still not as good as the Mixed Discretization used here (specially as
to maximum plastic strain).

Hallquist(1982a,1982c) This work Johnson (1981)
DYNAZ2D |DYNA3D INIKEZ2D | CMTQ MTQ CST X1 X2 CST

L 21.47|( 21.47| 21.47 |21.45}21.44|21.13 | 21.61| 21.61| 21.12

R 7.127( 7.034) 7.068 [7.068 {7.155] 6.061 | 7.136| 7.040| 6.016

eMXl 3,05 | 2.96 | 2.97 2.90 ]2.94 | 1.63 2.38 | 2.70 | 1.34

Table 5.1: Comparison of results from various calculations for impact
of cylinder (see fig. 5.13)

5.8 CONCLUSIONS

The capacity of the proposed explicit Finite Difference
algorithms for modelling Elastic-Plastic material behaviour in plane
and axisymmetric models has been validated, with a series of static
and dynamic benchmark tests. Special attention has been given to the
wave propagation and finite deformation capabilities.
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6.1 INTRODUCTION

Experimental and numerical studies of tension tests with necking
in bars are reported in this chapter. The aim is to derive
constitutive laws for the aluminium material used in the tube

crumpling analyses (chapter 7). Stress-strain laws valid for up to 1.5
strain are necessary for these analyses.

6 tension tests were carried out on HE30 annealed aluminium bars.
In these tests, after an initial stage of uniform extension, an
instability occurs, causing deformations to become localized in a neck
with very large strains. Reductions in cross-sectional area of A/Ay =
0.26 (fig. 6.1), corresponding to a uniaxial strain of 1.35, were
achjeved before fracture.

The stress and strain fields around the neck are markedly non-
uniform. Theoretical analyses of these distributions with some
empirical basis have been proposed by Bridgman (1952) and Davidenkov
and Spiridinova (1946). These semi-empirical distributions were used
here to provide a first interpretation of the test results, obtaining
tentative hardening laws for the material.

The tension tests were then modelled with the explicit numerical
techniques proposed in this thesis (chapter 4). Calculations were
performed successfully up to the large neck strains observed in
experiment. the stress/strain distributions obtained in the
calculations confirmed in general the validity of Bridgman's and
Davidenkov's solutions. Load and average stress evolution curves
fitted closely the experimental results. With the hardening laws
obtained using Bridgman's semi-empirical interpretation as a first
guess, the computations allowed a further adjustment of the parameters
to provide a better fit with experiment.

The fb]lowing terminology is employed in this chapter:

- True (average) stress, P/A, axial 1oad divided by current cross-
section of bar;
- Natural (or logarithmic) strain, Ln(L/Ly), 1ogarithm of current over
initial length;
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- Effective plastic strain, €p (egn. 2.60b)

- Von Mises equivalent (or effective) stress,

Opq = (3/2)s:s (6.1)

where s is the deviatoric Cauchy stress tensor, eqn. (2.59).

6.1.1 CONSTITUTIVE IDEALIZATION

Elastic-Plastic theory has been very successful in describing the
deformation of metals and provides a good framework on which to build
models of material behaviour. A Von Mises yield criterion with
isotropic hardening and associative plastic flow provides a simple and
robust model for non-cyclic loading, giving acceptable answers for
most cases. With this choice of constitutive model, reliable data for
the elastic properties may be obtained from the supplier, handbooks,
or simple tests. The material parameters will be complete with the
hardening law Y(ffp), which relates the yield strength of the
material, Y, to a scalar measure of the plastic strain, the effective
plastic strain €p.

The flow stress Y is defined by the value at yield of the Von
Mises equivalent stress:

Y = Oaq (6.2)

In some special cases, a simple isotropic Von Mises model may not
represent the material satisfactorily. Specialized calculations for
well defined local stress states may require careful consideration
and/or matching of the loading condition for the test in which the
constitutive data were derived (e.g. pure tension, pure shear,
combined loadings).

If in such a problem plasticity is confined to a particular local
stress state, a determination of the yield and flow parameters for
that state within an isotropic plasticity idealization may suffice and
give satisfactory results. In a general situation more sophisticated
plasticity idealizations (e.g. Mroz (1967,1972), Ortiz and Popov



(1983)) will be needed, determining the constitutive data by numerous
tests for each stress orientation, at each level of hardening. This
process requires extensive and difficult experimental work, as well as
research to assess the appropriateness of constitutive idealizations.
Moreover, for large strain analysis, the effort involived would be
greatly increased and complicated, with uncertain results.

In the Concertina tube collapse mechanism, large plastic strains
are produced under a variety of stress states. For a global modelling
of this phenomenon an isotropic Von Mises idealization is a simple and
reliable idealization, which produces satisfactory results.
Additionally, with this choice of model the constitutive data can be
determined easily from direct measurements in simple tension tests.

Due to the quasi-static nature of the problem to be modelled,
material rate effects do not need to be included. Fracture of the
material is not necessary in the model either, as the annealing
process to which the Aluminium was subjected increased the ductility
sufficiently to remove fracture from the range of relevant phenomena.

6.1.2 TENSION TESTS - A REVIEW

Tension tests have been widely used for determining mechanical
properties of metallic materials. Standard specifications exist for
carrying out these tests : ASTM E8-82, ASTM E646-78, BS18. The
material behaviour can be easily obtained from these standard test
procedures when strains are small or moderate, in which case the
deformations in the tensile specimen may be assumed uniform (Over the
cross-section and along the bar). Such is not the case, however, when
strains become large: the specimen necks and deformations become
highly localized, creating as a result non-uniform stress and strain
distributions.

In a test to derive the mechanical properties of a material
discrete measurements are taken of forces and displacements, producing
average values for stresses and strains. If the stress and strain
fields can be assumed uniform, these average measurements provide
directly the data for the elementary constitutive laws. However, all
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means of producing large plastic deformations involve highly complex
non-uniform stress distributions. Appropriate large strain test
procedures include torsion tests on tubes or cylinders, compression
tests on cylinders (in which results must be corrected for barrelling
and friction), and tension tests on cylindrical bars or flat plates.
Tension tests on cylindrical bars were chosen here for the simplicity

in measurements and suitability of available equipment.

The analysis and interpretation of the necking deformation in
tension tests is a solid mechanics problem which has attracted some
interest. Bridgman (1944, 1945, 1952) and Davidenkov and Spiridinova
(1946) were the first to study this problem in some depth. They
presented analytical interpretations based on some experimentally
confirmed assumptions, which provide stress/strain distributions valid
in the minimum section of the neck. The main assumption in both
Bridgman's and Davidenkov's work is that the radial strains are
constant across the minimum neck section. This fact was corroborated
experimentally by Davidenkov (1946) measuring the average grain sizes
at different positions and orientations in the neck section. Bridgman
silver-soldered cores of various diameters into hollow specimens,
obtaining a similar confirmation. Experimental evidence to this effect
has been obtained here from microhardness tests and is presented
further down in section 6.3.5.

Bridgman's and Davidenkov's early work in the interpretation of
tension tests has represented the state of the art for many years. Not
until recently have minor extensions to their analytical work been
produced (Kaplan (1973), Jones (1979)).

On another front, the development of digital computers has
enabled tension tests to be interpreted in a more general form through
the use of numerical models. The first general numerical solution was
obtained by Wilkins (1968) with an early version of his HEMP finite
difference hydrocode, but received limited publicity. Further work
along this line has been reported by Wilkins (1978), Wilkins et al
(1980), employing tension tests to obtain material idealizations for
perforation analyses and ductile fracture test models. Wilkins carried
out computer calculations to corroborate certain assumptions and gain
additional information on constitutive parameters. However, in the
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interpretation of the tension tests Wilkins does not consider the
effect of the non-uniformity of axial stresses in the neck. He
acknowledges the error, using his simple interpretation to establish a
first crude guess for the material parameters, which are then
corrected on the basis of the results of numerical calculations.

Norris et al, (1978) have also used HEMP to simulate tension
tests. They followed essentially the same method as Wilkins,
performing iterative computer analyses to obtain universal flow stress
curves from the tension test data. They reported triaxial tensions at
the specimen axis higher than those predicted by Bridgman (1952).

A Kantorovich numerical approach assuming global polynomial
displacement functions has been proposed by Chen (1971). He used an
early large strain formulation which contains some deficiencies such
as lack of correction for rigid body rotations. The global
displacement functions failed to represent adequately the boundary
conditions. A similar large strain formulation was used by Needleman
(1972) within a Finite Element context. As Norris (1978), Needleman
found Bridgman's (1952) solution to underpredict the triaxial tensions

in the specimen.

The work presented here uses both theoretical stress/strain
distributions and numerical calculations for the interpretation of
tension tests. Analytical results and empirical correlations due to
Bridgman (1952) are first used to provide an initial guess for a
universal flow stress curve from simple tension test data. This
material law is then fed into the computational model, and by
comparing the results with experiment, the parameters are adjusted
more finely. The interpretation based on Bridgman's semi-empirical
results provided with little effort very reasonable guesses for the
material laws, and only minor changes were suggested by the
computational results. On the other hand, the stress/strain
distributions obtained in the calculations confirm broadly Bridgman's
(1952) and Davidenkov's (1946) assumptions.

Although the numerical approach used by Wilkins (1978) is broadly
similar to the present one (both employ explicit finite difference
codes) neither he nor Norris et al.(1978) used any 1hterpretation of

(O8]




the tension test data fed into the computer model; the stress was
merely averaged across the neck section. Adjustment of material
stress-strain law parameters was achieved by iterative computer
analyses. Here it was found that the difference between the direct
average data (fig. 6.4) and the material uniaxial stress-strain law
(fig. 6.7) was considerable for the reductions in area sustained (20%
difference for A/A;-0,26). An accurate initial guess could be obtained
using a simple semi-empirical interpretation, thus saving considerable
computer resources.

6.2 THEORETICAL INTERPRETATION OF TENSION TESTS

Tensile tests on cylindrical bars have been used extensively to
study the mechanical behaviour of metals. For brittle or low ductility
metals the strain and stress fields are approximately uniform
throughout the test, with small reductions in area. Fracture occurs
before departing from this uniform state. Uniformity is also the case
for a more ductile material, when only the determination of the

elastic constants or the yield point is sought.

Ductile metals can sustain large plastic strains before fracture.
The reduction in cross-sectional area is important, and the original
area (Ag) and gauge length (Lo) no longer provide a valid basis on
which to measure stresses and strains. In a first phase of moderate
reductions in area, deformations remain uniform; true (Cauchy)
stresses and natural (logarithmic) strains provide a good description
of the material behaviour. For a uniaxial tensile test they are

defined thus:

O0zz = P/A (6.3)
L
€77 = J- dL/L = Ln(L/Lo) (6.4)
Lo
where: 0,;, 1s the true axial stress

P is the applied axial load
A is the current cross-sectional area

€zz is the natural axial strain
Lo 1S the original gauge length
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L is the current gauge length

The natural strain keeps a cumulative record of the straining in
each direction at a point in the material, referred at every instant
to the current configuration. This description is very convenient for
the tensile test, for as long as deformations remain uniform, the
axial stress coincides with the Von Mises equivalent stress, and the

natural axial strain equals the effective plastic strain:

O’eq = GZZ

A proof of this last assertion is given further down in section 6.2.1,

A second phase in the tensile test begins when the specimen
starts to neck. At this moment the material hardening no longer
compensates for the reduction in area, occasioning a decrease in the
total axial load. The material tries to harden enough to match the
applied load, producing localized deformations in a small neck region,
to which subsequent plastic flow is confined; the rest of the specimen
unloads elastically. A non-uniform state of stresses and strains
exists, and formu]ae{(6.4) alone no longer provide a valid description
of the test. (6.3)

6.2.1 STRAIN DISTRIBUTION AT MINIMUM NECK SECTION

From the assumptions of axial symmetry and uniformity of radial
strains, and considering the symmetry condition across the plane of
the minimum neck section, the rate of deformation components (see

sect. 2.2.3) may be expressed as follows:

o

i

LQ.J
o v
0

D/D
r
T o
dyp = 10u +ur =0+/0 = dpp (6.6)
r dg r
d.. -

ro = dgz = drz =0
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where: r, 6,z stand for radial, circumferential and axial
directions respectively
dij are the physical components of the rate of deformation.
ui are the displacement components
D is the diameter

superposed dots represent material time derivatives as usual

From (6.6) it may be seeen that uniformity of drr implies drr=9¢
as well. This fact was checked independentiy by Davidenkov(1946)

measuring grain sizes in both radial and circumferential directions.

In the necking phase elastic strains are negligible so it may be
assumed the deformation is produced entirely by plastic flow. The
incompressibility characteristic of plasticity in metals permits the

derivation of the axial rate of deformation component:

dzz = -2dpr = -2D/D (6.7)

From eqns. (2.60b), (6.6) and (6.7) the effective plastic strain may
be expressed as

D
Do
where Do 1S the original diameter of the bar.

Thus €5 and consequently the yield strength Y are constant
across the minimum neck section.

This result has been corroborated experimentally here with the

help of microhardness measurements, taken on sections of the deformed
tensile specimens (sect. 6.3.5).

6.2.2 STRESS DISTRIBUTION

From the Levy-Mises plastic flow rule,

Sij = Ndigp (6.9)



where N is an arbitrary positive scalar. Considering eqn. (6.6) one
may then write: ‘

Orr = 0Ogy (6.10)

This equation was derived independently by Nadai(1946) from
solely theoretical considerations of a Von Mises yield surface and a
minimum force principle. Considering the constancy of Y across the

section, one may also write:

07z - Opp = ¥ (6.11)

which is valid for all points in the section. This stress distribution
may be interpreted as a uniform axial tension of value Y superposed to
a varying hydrostatic stress of value Oppe The hydrostatic stress,
due to the free boundary condition, vanishes on the outer edge. In the
interior the sign is tensile due to the concavity of the curvature,
and from the symmetry condition around the axis, a maximum value must
be reached on it. Equation (6.11) implies then that Ozz ’ Y
throughout the section; hence the average value must also be greater,
07
in their calculations with HEMP, where for an axjal strain of 0.52,

6}2 = 460 MPa while Y = 430 MPa .

> Y. This explains the difference reported by Wilkins et al.(1980)

From the general equilibrium equations

0ij,j =0 (6.12)

Bridgman(1952) and Davidenkov(1946) derived the distribution of axial
stresses, depending on the radial coordinate r and on the radius of
curvature of the longitudinal principal stress line, p:

D/2
02z = Y(1 +J dr) (6.13)
r P

Bridgman(1952) proposes the following formula for the radius of
curvature p depending on the radial coordinate :



p= (D2/4 + DR -r2)/2r (6.14)

where R is the geometrical radius of curvature at the root of the
neck. Substituting in eqn. (6.13) and integrating to find the average

stress:

0,, = Y(1 + Ln[(D?/4+DR-r?)/0R])
(6.15)
6}2 = Y(1 + 4R/D)Ln(1 + D/4R)

This last equation gives the value of the material strength Y
from the measured average axial stress Ozz- Lt depends on the
possibility of measuring R, the radius of curvature. This can be a
little bit cumbersome in a test where multiple measurements are to be
taken. Bridgman(1952) produced an empirical correlation from multiple
observations for different sorts of steel and other metals that

expresses D/R as a function of the reduction of area A/A; (or what is

the same, the axial natural strain €zz) °

D/2R jV/L"Ao/A - 0.1 =/€z7 - 0.1 (6.16)

This result allows the correction factor Ozz/Y to be expressed
directly as a function of the axial strains:

0,,/Y = [1 + 24f€,,-0.11Ln[1 +4f€,,-0.1 /2] (6.17)

€ < 0.1

This formula may be applied only for €zz > 0.1 . For ©¢zz
the deformation is assumed uniform, and no correction is needed.

6.3 TENSION TESTS

6.3.1 SPECIMENS AND MATERIAL

The material used in the tests was HE30 (BS1474) Aluminium alloy,
with the following composition : 0.1% Cu, 0.4-1.5% Mg, 0.6-1.3% Si,
0.6% fe, 0.4-1,0% Mn, 0.1%Zn, 0.5%Cr, 0.2% others, and the rest
Aluminium, This material comes in extruded cylindrical form.
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Mechanical properties in the as-received condition were obtained
from the manufacturers:

0.1% proof stress 239 - 270 MPa
density 2700 Kg/m
Young's modulus, E 67000 MPa
Poisson's ratio,? 0.3

Ultimate tensile strength 278-293 MPa
Elongation on 2 in 7 - 10%

This material was cut and machined to form specimens of the
geometry described in figure 6.2 . A slight taper was given in order
to control the necking position, the smallest diameter being located
at the mid-section.

The composition and treatment of HE30 Aluminium is identical to
the HT30 Aluminium tube material employed in the tube crumpling tests.
The only difference 1lies in the forming processes (extrusion or
drawing). As a result, mechanical properties for both materials are
very similar. The small difference was assumed to vanish in the
annealing process to which both specimen types were subjected (sect.
7.3.2.1).

6.3.2 PROGRAMME

The specimens were annealed at 3500C prior to testing. Six tests
in all were performed with the following annealing times:

Test Annealing time, hours
CT1 5

cTe 7

CT3 none

CT4 3

CT5 5

CT6 5
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After annealing, all specimens were oven cooled.

6.3.3 PROCEDURE

The tests were carried out using an INSTRON Model 1195 machine,
with a 100kN 1oad cell. The specimens were secured with transversal
12.9 mm diameter steel pins to a fixed crosshead at one end and a
moving crosshead at the opposite end. The load was applied with stroke
control, at crosshead velocities of between 0.5 and 1.0 mm/min , up to
specimen fracture. Frequent measurements of the neck diameter were

taken with a Vernier caliper (precision f0.05 mm ).

6.3.4 RESULTS

The results of the tests are summarized in figures 6.3 and 6.4.
Figure 6.3 shows the axial load against the axial strain €,, 3t the
minimum neck section. In all the tests a peak value of the load is
reached when the necking instability arises. All specimens show fairly
close results except CT3, which was not annealed. CT3 shows an earlier
onset of necking, at around EZZ=O.O7, and much higher levels of
loads, with peak value 57kN. This corresponds to a strength of 285MPa
referred to the original cross-sectional area, in accordance with the
manufacturer's specifications (sect. 6.3.1). The non-annealed CT3 test

showed also considerably less ductility (max. natural strain

€22=0.70).

Results for the remaining tests all lie within a narrow band;
peak loads range between 21 and 25kN, onset of necking between
€7z=0.15 - 0.20 , and maximum strains before fracture between
€,,=1.15 - 1,25 , Differences in annealing time clearly did not
influence the behaviour beyond experimental uncertainty. For instance,
specimen54CT5 and CT6 were annealed for longer time (5 hrs) than CT4
(3 hrs), yet they yield results which are slightly closer to the non
annealed CT3. These differences must be attributed to experimental
scatter. The annealing process may be assumed complete for all
specimens except CT3.
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In figure 6.4 the average axial stress at the neck is plotted
against the axial strain for the annealed specimens. Although the
total load drops after the onset of necking due to the geometrical
reduction in area, it may be seen that at the elementary level the

material does not cease to harden.

Fracture occurred with ductile cup-and-cone geometries for all
the annealed specimens. A representative picture of one of the
fractured specimens is given in figure 6.5 . For the non-annealed
specimen CT3 fracture was more brittle and occurred earlier with a
bang, producing a much less well developed neck (fig. 6.6).

Judging from these results it was concluded that completion of
the annealing process was reached for CT1l, CT2, CT4, CT5 and CT6
specimens. The mechanical properties derived from each of the tests
may be averaged in order to obtain representative properties for
annealed HE30 aluminium alloy.

6.3.5 MICROHARDNESS MEASUREMENTS

The necked bars were employed to study the distribution of
plastic strains across transversal sections. This was done through
microhardness measurements performed in a section normal to the axis
of one of the tensile specimens after fracture. This section was the
nearest to the fracture zone which did not show visible voids or
change to its structure from the fracture. After polishing,
microhardness indentations were performed at several locations along
two normal radii. Further details of the microhardness testing
procedure and equipment are given in section 7.3.1.3.1. The results
are shown in table 6.1; they show no significant variation of the

hardness accross the section.
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Figure 6.5: CT4 tensile specimen after fracture Figure 6.6: CT3 tensile specimen after fracture (non-annea]ed);
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Point Indentation Diagonal Microhardness
(Microns) Hin(Kg/mm2)
1 53 64
2 53 : 64
3 54 63
4 52 66 Current diameter
5 52 66 D = 9.2mm
6 53 64 Original diameter
/ 8B 65 Do = 15. 9mm
Microhardness load
P = 99g

| €,,=-2Ln(D/Do)=1-11
Table 6.1: Microhardness measurementes in neck section of tensile
specimen CT4.

From simple considerations of plasticity theory (Hi11(1950),
p.254), the hardness value H can be related linearly to the material
strength Y, itself function of the plastic strain ep:

C being a constant whose value lies between 2.5 and 3.0. Hence these
microhardness results support the assumption of constancy of Y and ep
across the minimum neck section (sect. 6.2.1).

6.4 MATERIAL HARDENING LAW

For aluminium power laws of the type
og=A¢e" (6.18)
where: o uniaxial true stress

€ uniaxial natural strain
A,n material constants
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fit the material behaviour very well. The parameters A,n have a
physical interpretation: A equals the stress for unit strain, and it
can be shown that n corresponds to the strain at the peak load in a

tensile test.

Given the equivalence between the uniaxial stress and equivalent
stress pointed out in eqn. (6.5), a convenient and general form of
expressing the material behaviour is

N = A( ep+Y/E)" ~ A€ (6.19)

z7) B
Y/E represents the elastic part of the strains; these are usually very
small compared to the plastic part, €p.

The average axial stress data presented in figure 6.4 were
corrected with formula (6.17) to obtain the values for the material
strength, Y. A power law Y = A( Ezz)” was then fitted to the data
from each test, by performing a linear regression in the logarithmic
values (table 6.2). The parameters A,n so obtained for each test were
averaged yielding mean values of A=181.7 MPa, n=0.182; these
parameters provide a reasonable first estimate for the material
hardening law.

Test |A (MPa) n

CT1 169.1 0.190

CT? 172.5 0.177 Power law
CT4 184.7 0.196 Yy = Aeh
CT5 191.5 0.170

CTé 190.6 0.178

Average| 181.7 0.182

Table 6.2: Results of power law fits to tension test results
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The results of this average fit, together with the equivalent
stress - strain data derived from experiment, are plotted in figure
6.7 . Comparing with the average axial stresses in figure 6.4 the
influence of the correction formula (6.17) is patent, lowering
considerably the stress values for the larger strains. For a unit
strain, the average axial stress is approximately 215 MPa, while the
equivalent stress is lowered to 182 MPa , a reduction of 18%.

Although the "average" power law obtained represents a good
overall fit, it can be seen in figure 6.7 that some discrepancies
still exist in the region of lTow strains ( €zz < 0-2), while the fit
is very good for the higher strains. It can also be seen that the
discontinuous application of the correction formula (6.17) from €22 >
0.1 has produced a discontinuity in the slope of the stress - strain

data.

It is reasonable to suspect that the critical region for
application of the correction formula (6.17) is in the low strain
region, before the necking or when the neck curvature is small. It is
here that the empirical relationship (6.16) between the neck curvature
and the axial strain may be more in error. This relationship has a
bias towards steel, which usually necks earlier than aluminium,
Greater confidence can be placed in egn. (6.16) for the higher
strains, where the necking is well developed.

Consequently two additional curve fits to the corrected
experimental data have been tried. These maintain roughly the same
stress values for the higher strains, but differ slightly from the
average curve fit for the lower <! 2in region. A simple way for this
variation is, maintaining the power law approach, to keep the same
value for parameter A (which represents the stress for unit strain),
and vary the exponent n. Two additional values of n were tried :

61 = 0.159 which gives a curve in the middle of the stress
band, for €,, ¢ g,2

N2 = 0.133 which gives a curve near the top of the stress

band, for €7z < 0.2

[t appears that ny ghoyuld give the best fit, but this will be
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decided from the results of numerical calculations using the three
suggested curve fits, and their comparison with experimental

observation.

6.5 NUMERICAL CALCULATIONS FOR TENSION TESTS

The tension tests were simulated numerically. From the results of
the calculations it was possible to decide on the power law parameters
that provide the best fit for the experimental results. Additionally,
the calculations provided a check for the validity of the assumptions
that were made in the interpretation of the tensile test for the
stress and strain distributions. Finally this exercise was useful as a
validation of the Explicit Finite Difference model proposed in this
thesis (chapter 4), when applied to large scale non-linear
computations for practical engineering problems.

6.5.1 MODEL

The calculations were performed using axisymmetric analysis, with
a 2-D discretization in the r-z plane (fig. 6.8}). The symmetry
condition around the plane of the minimum cross-section (z=0) allowed
a further reduction to a quarter of the r-z section. The mesh
consisted of 875 triangular cells, grouped into 438 MTQ elements (see
sect. 4.2.2) and 390 nodes. The model did not comprise the end fixings
as they lie far from the area of interest and it was considered that
they behave in practice as rigid load-transmitting devices. Only the
central tapered portion of half-length 37.5 mm was modelled. Shear-
free boundary conditions were assumed at the top and bottom ends of
the specimen modelled. The mesh becomes progressively finer near the
neck region, which is the area of interest, and where the stress and
strain gradients will be steepest. Additionally, a high r:z aspect
ratio wa§ given to the elements in this area in order to avoid
excessively distorted shapes when the neck 1is elongated in the axial

direction.
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6.5.2 ANALYSIS

The tests were performed under quasi-static conditions at speeds
of between 0.5 - 1.0 mm/min. The numerical algorithm used solves the
equations of continuum mechanics in time with an explicit time-
marching scheme; this leaves no option for static analysis, as
calculations represent always a full dynamic model. As the
computational time-step is limited for numerical stability to a small
value (sect. 4.7), it would be too expensive in computer time to
perform the dynamic analysis in real time.

To be able to perform the calculations velocity scaling was
introduced (see sections 4.1, 5.4). The velocity of deformation was
increased in order to bring down the number of computational cycles
necessary for the analysis, from the 2x1010 that would be needed if
the real velocity of deformation were to be used, to around 4x104,

Velocity scaling usually works well for quasi-static problems, as
long as the deformation is applied slowly enough so as to let the
stress-waves travel back and forth along the model several times,
allowing redistribution of stresses. In other words, the model must
not depart too much from the static equilibrium which must be
simulated at each step in time. Two ways of quantifying this departure
from equilibrium are:

- Ensuring that the load histories at opposite ends of the specimen
are approximately equal (the out of balance forces must be small when

compared to the total forces);

- Checking that the kinetic energy is small compared to the overall
energy involved in the deformation process.

Three calculations are reported here, for each of the power law
curve fits for the material constitutive behaviour suggested in
section 6.4 (eqn. 6.18):

153



Y = Ae

Analysis A (MPa) n
TENS3 181.7 0.182
TENSS 181.7 J.159
TENS7 181.7 0.133

In the calculations the typical axial velocity was 10 m/s and
total times of analysis were between 1.25 msec and 1.6 msec.

The neck section was kept fixed in its plane while a prescribed
velocity was applied to the upper end (fig. 6.8). The histories of
applied velocities are given in figure 6.9 . Ramps were introduced to
avoid sudden changes causing alterations to the equilibrium.
Considering the stress-wave propagation velocity in Aluminium of 6000
m/s and an initial length of 37.5 mm , the largest stress-wave period
is (initially) 0.0125 msec . Thus the number of stress-wave periods in
the calculations, or in other words, the number of times the stress
waves travelled back and forth redistributing stresses, is between 100
and 128, We shall see later (sect. 6.5.3) that the departure from
equilibrium in the force histories this amount of velocity scaling

ocassioned was small,

The importance of this cost-cutting compromise will be clear by
mentioning that CPU time for each of the calculations in a CRAY-1S was
between 30 and 45 minutes. This represents considerable computer
resources. In a model without velocity scaling the costs would be
5x105 times higher (tens of years CPU time), way beyond the feasible
range with the current development in digital computers.

6.5.3 RESULTS

The average stres versus strain results (fig. 6.10) lie precisely
where it was presumed from the choice of curve fits done in section
6.4 . In all three cases for the large strain region (ezz > 0.2) the
fit is very good, in the middle of the experimental band. For the low

strain region ( €,, < 0.2) the results from TENS3 are in the lower
part of the band, TENS5 in the middle, and TENS7 in the upper part.
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This suggests that the curve fit used for TENS5 is the most
appropriate, as had been anticipated. Hence, the hardening law for the
HE30 aluminium material will be taken as:

Y = 181.7 €9-199 (wpa) (6.20)

A view of the deformed mesh for TENS5 with all symmetries plotted
is given in figure 6.12. At this point the axial strain at the neck
was €zz = 1.22 .

The curves presented in figures 6,10 and 6.11 were taken from the
calculated time-histories, after averaging the load between top and
bottom of the model, and having applied a numerical filter with a
centred moving average technique, to facilitate the visualization and
interpretation. The exact time-histories obtained in the calculations
for top and bottom loads are giveh in figure 6.13 . It can be seen
that a state of static equilibrium existed for most of the analysis,
the two 1oad histories being approximately equal. At about 1.1 msec
however, some oscillations occur in the histories creating certain
departure from static equilibrium. These oscillations have
approximately the period of the longitudinal stress waves travelling
along the specimen:

T=2L =2 45x10-3m = 0.015 msec
c 6000 m/s

L being the current length of the specimen and ¢ the velocity of
stress waves., It can be appreciated that only a small number of
stress-wave periods occur in an interval of time at which large
variations in the neck size (see figqure 6.14) and material behaviour
take place. The model does not have time to digest these changes
quickly enough and the information is transmitted in jumps originating
the consequent elastic oscillations. It is interesting to note the
larger amplitude of the oscillations at the top end, which is
unloading elastically, than at the neck, where the plasticity of the
material behaviour dampens out the oscillations. At no moment however
do the oscillations in load depart from the equilibrium value by more
than 10%, and the expected trend of the load curve is maintained.
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For details of
initial geometry
see Figure 6.8
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For figures 6.10 and 6.11 the load histories were averaged and
filtered, removing oscillations of frequencies higher than 50000 Hz,
which corresponds roughly to the stress-wave period. In this way the
overall trend of the results can be seen more clearly, without
unwanted ndmerica] oscillations, due mainly to the compromise made in

the velocity scaling.

Some contour plots of different stress components for the neck
region are presented in figure 6.15; the following observations may be

made about these:

a) The radial (fig. 6.15b) and hoop (fig. 6.15c) stresses are
approximately equal in the neck region, tending to zero at the outside
edge, and reaching maximum values near the axis of about 60 MPa;

b) The axial stress (fig. 6.15d) is clearly non-uniform across the
neck section, decreasing from approx. 270 Mpa in the axis to 200 MPa
on the outside;

c) The yield strength Y (eqn. 6.2) is roughly uniform across the neck
section (fig. 6.15a), with an approximate value of 189 MPa;

d) The axial strain at the minimum section is €77 = 1.22, which from
eqn. (6.20) corresponds to a flow stress of

Y = 181.7x1.220-1%9 = 188 wpa
and an average axial stress (from eqn. (6.17)) of
0,; = Y(1+2/V1.12)Ln(1+V1.12 /2) = 1.,23Y = 231 Mpa

These values correspond very closely to those expressed above in ¢)
and b) respectively.

The yield strength contours for the complete specimen are plotted
in figure 6.16, showing the much lower levels of strain-hardening
which occurred in the upper part of the model. This hardening
happenned in the first stage of uniform deformation of the specimen;
after the necking that region has been unloading elastically.
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A1l these results match very closely the theoretical
interpretation of the tensile test detailed in 6.2, suggesting the
general validity of that interpretation and of the numerical model.

6.6 CONCLUSIONS

1. Tension tests on cylindrical bars constitute a simple and
reliable means of obtaining material stress/strain data at large
strains, when viewed as a 3-D plasticity problem.

2. The interplay between the theory (sect. 6.2) and numerical
analysis (sect. 6.5), coupled with experimental fact (sect. 6.3),
allowed a simple and representative constitutive law for the HE30
Aluminium to be established (egqns. 6.18, 6.20), for use in future
large strain plasticity analyses (chapter 7). This constitutive law
assumes Von Mises plasticity with power law isotropic hardening.

3. Excellent agreement was achieved between numerical predictions,
experimental fact, and theoretical understanding, of the behaviour of
a plastically deforming necked cylindrical bar (sections 6.3.5, 6.5.3,
figs. 6.10, 6.11, 6.15). The semi-empirical theories of Bridgman
(1952) and Davidenkov and Spiridinova (1946) were broadly confirmed by
the numerical results.
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7.1 INTRODUCTION

The numerical methods described in chapter 4 are applied here to
the analysis of tube collapse mechanisms, with a view to studying
their performance as energy dissipating devices.

In accordance with the characteristics of the computer program,
the attention was restricted to mechanisms which could be studied
through axisymmetric or 2-dimensional models. In particular, most of
the work relates to axial collapse of tubes through axisymmetric
sequential folding. This mode of coilapse plays an important role in
energy dissipation and its numerical modelling poses some interesting
challenges. For example:

a) Large strains (with values higher than 1.3) and gross deformations
(complete crumpling of tube walls) need a careful and consistent
mathematical treatment (chapter 2);

b) The need to provide constitutive laws valid for large strains
(chapter 6);

c) Contacts with the platens and between folds make necessary a
general logic for interaction between continua;

d) Dynamic analysis is necessary, as energy dissipation occurs mainly
in impact situations, where stress-wave propagation or inertia effects
are often important;

e) Lastly, a robust numerical algorithm is necessary which

accomodates the solution to the above problems and works well in

practice for real, engineering scale problems (chapter 4).

7.1.1 SCOPE

This chapter relates to the following:

1-  Firstly a general overview of energy dissipation, and the role of
tubes in it, is presented. This is followed by a description of some
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experimental work on tube collapse; most of this work was carried out
by Ghani (1982), and it will be used to compare with the numerical
predictions for axisymmetric tube crumpling that follow.

2- Results from numerical calculations of quasi-static axial
collapse are given for 4 different tube geometries (table 7.3). Over
20 computer analyses (table 7.4) were performed in order to assess the
applicability of the method, and evaluate the influence of various
modelling choices. Optimal models were then selected for the final
analyses. The results are compared with experimental data.

3-  In the medium velocity range, a full-scale model of the impact of
a thin-walled vessel at 176 m/s was performed. This problem tested the
performance of the computer code for large scale engineering
computations, involving several thousand degrees of freedom and over a
hundred thousand time-steps. The results compared well with available
experimental data. The crushing force obtained was found to be
considerably larger than for low-velocity collapse.

7.2 OVERVIEW OF ENERGY DISSIPATING DEVICES

Energy dissipating devices are reviewed briefly in this section.
The intention is to introduce practical projections for the numerical
applications presented later. The importance of the various tube
collapse mechanisms is highlighted.

7.2.1 DEFINITION AND CRITERIA

Energy dissipating devices are mechanisms which can dissipate the
kinetic energy from the impact of colliding bodies in an irreversible
manner.

Elastic, recoverable systems are therefore excluded from this
definition. Usually, energy is dissipated through plastic work, being
converted into heat eventually. To fulfill their function without
excessive deceleration and consequent damage, energy absorbers must
provide a reasonably constant operating force over as long a stroke as
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possible. This must occur in a controlled (i.e. without catastrophic

failure) and reliable way.

Ideally energy absorbers should be made of low cost and widely
available components, with high values for the following parameters:

- Specific energy, i.e. Energy dissipated / Mass of device
- Stroke efficiency, i.e. Absorbing length / Total length

- Energy dissipating density,i.e. Energy dissipated / Volume of
device.

7.2.2 TYPES OF ENERGY DISSIPATING DEVICES

Some of the main types of energy absorbers are summarized below,
concentrating on destructive (one shot) devices, mainly of metallic
materials. No attempt is made to provide a comprehensive review of the
topic. Excelient reviews have been given by Johnson and Reid {(1978)
and Ghani (1982).

Schematically one may classify the various mechanisms according
to their mode of behaviour, as follows.

a) Extension., Steel rods or cables under tension have been used
extensively in pipe-whip restraint systems (e.g. Hernalsteen and
Leblois, 1976). A disadvantage is that tensile deformations tend to
become localized in necks and may produce overall failure.

b) Compression. For instance the crushing of lightweight cellular

bodies or of soft copper bumpers (Hernalsteen and Leblois, 1976).

c) Bending. Beams and plates may dissipate energy through rotation in
plastic hinges. Laterally crushed tubes or assemblies thereof provide
some very useful devices (Thomas, Reid and Johnson (1976), Shrive,
Andrews and England (1984)).

d) Compression and bending. Systems in which bending modes are




produced as a result of a structural compression may be inciuded here.
These comprise some of the most efficient energy absorbers, such as
the axial crumpling of circular tubes (axisymmetric or diamond modes)
and tube inversion. Tubes with non-circular sections have been used
advantageously by Kukkola (1976). Honeycomb panels provide also a very
popular and reliable mechanism (McFarland, 1963).

e) Cyclic bending, Here one may include systems such as the rolling
torus of Johnson, Reid and Singh (1975). These tend to be associated

with lighter operating loads.

7.2.3 TUBES AS ENERGY ABSORBERS

Tubes have a particular interest as energy absorbers, because of
all the existing devices they present the widest range of possible
uses; These include some of the most efficient and reliable energy

dissipation mechanisms,

Tubes are simple structures and therefore cheap and widely

available. Additionally, the basic structure of many moving vehicles
and aircraft is a tube, which will double up in function as an energy

absorber in the event of a collision.

The main tube collapse mechanisms are reviewed below. Some simple
classical analytical formulae for collapse loads are included where
pertinent.

7.2.3.1 LATERAL COMPRESSION

Tubes crushed laterally provide a very reliable energy absorber
in which the plastic deformation is concentrated around lTocalized
hinges. DeRuntz and Hodge (1963) studied experimentally and
theoretically their behaviour, deriving a formula for the collapse
load based on a rigid-plastic, thin shell model:
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p = J ) ¥ th (7.1)
D ]1-(6/0)8

where O01is the displacement, t, and D the thickness and Diameter of
the tube respectively, and Y the Yield stress for a perfectly plastic

material model. Due to the absence of material hardening in (7.1) some
discrepancies with experiments were notable; Reid and Reddy (1978)
have proposed more recently solutions in which linear strain hardening
is considered, achieving better results.

7.2.3.2 AXISYMMETRIC AXIAL CRUMPLING

When subjected to axial compression, tubes may buckle in an
axisymmetric fashion, forming concertina-type folds which pile up
sequentially on top of each other (Figure 7.la).

This collapse mode constitutes a very efficient energy absorber,
by reason of the gross plastic deformations which occur in a large
proportion of the tube. The sequential nature of the folding process
accounts for a reasonably constant operating force over a long stroke.
For given tube dimensions this mechanism is reproducible and very
reliable (Ghani, 1982).

Alexander (1960) first derived an approximate solution for this
mechanism from rigid-plastic thin shell assumptions. The average
collapse load and fold length according to this theory are

P = 6ty Y\Dt, (7.2)
= [& Dt (7.3)
23

Alexander's formulae, however simple, give sensible predictions
in general; they are often referred to (e.g. Johnson, 1972) and
continue to be used today by many workers (e.g. Hurley, 1983, Mamalis
and Johnson, 1983). However, eqn. (7.2) assumes a perfectly plastic
material (no hardening); for good predictions care must be taken to
use a value for Y representative of the actual average strain-
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hardening of the material. Experimental and numerical studies carried
out here show effective plastic strains accross the fold sections of
the crumpled tube between 0.3 and 1.3 (section 7.3.3). This suggests
an appropriate average value of 0.8 strain to be used for obtaining
the value of Y.

Numerical analyses of these mechanisms are undertaken in sections
7.3 and 7.4, constituting the core of this chapter.

7.2.3.3 DIAMOND FOLD AXIAL CRUMPLING

When subjected to axial compression, another possible collapse
mechanism is the formation of non-axisymmetric folds in a diamond
pattern, accompanied by a change in cross section of the tube (figqure
7.1b). This mechanism is also reliable and efficient as an energy
absorber, although the specific energy is slightly lower than for the
concertina mode {Ghani, 1982).

Diamond fold crumpling was studied by Pugsley and Macaulay
(1960), who proposed formulae based on rigid-plastic analysis. Further
study has been made by Johnson, Soden and Al-Hassani (1977) who
assumed ‘'inextensional collapse modes'. Thornton and Magee (1977) have
also used these devices as energy absorbers; they prepared the tubes
previously by making 3 circumferential indentations at one end, in
order to avoid the initial peak load and trigger smoothly a 3-lobe
diamond pattern.

7.2.3.4 TUBE INVERSION

Tube inversion modes may be achieved either by pushing a tube
axially against a radiused die or by preforming and clamping
appropriately one end. Inversion may be external or internal. Plastic
deformations extend to virtually the compliete length of tube, as each
section is first bent, and then straightened out. An efficient energy
absorber with a nearly flat load response is thereby obtained.

Guist and Marble (1966) have considered inversion tubes for
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impact absorption in landing of aircraft and space vehicles; they
proposed a simple rigid-plastic equation for the collapse load:

P = TtoY/8Dto (7.4)

Al-Hassani, Johnson and Lowe (1972) have presented a detailed study of
these devices, developing further the analysis to include power-law
strain-hardening, achieving thus a better match to experimental

results.

7.3 QUASI-STATIC CONCERTINA TUBE COLLAPSE ANALYSIS

7.3.1 RELATED EXPERIMENTAL WORK

A description is given here of the experimental work on quasi-
static collapse of Aluminium tubes to which reference will be made in
the following sections, where the experimental results will be
compared with numerical predictions. Most of the experimental data
mentioned here are derived from work done by Ghani (1982) who
undertook an extensive programme of study and classification of
collapse modes, spanning 189 different tube geometries. A good
synopsis of these tests and their results has been given by Andrews,
England and Ghani (1983).

In addition to Ghani's work, 5 extra tubes have been crumpled for
this investigation in order to provide additional experimental data
which were needed (Table 7.1). This was done with the same material
and under identical conditions as Ghani (1982).

Finally, in order to provide data for the stress distributions
around the fold hinges, some crumpled tubes were cut and microhardness
tests performed on the wall sections. The microhardness data were
calibrated and correlated to the material strength Y.
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Geometry Collapse mechanism

to(mm} L(mm) | OD (mm)

1.27 50.8 38.1 Concertina, 3 1/2 folds
1.28 88.9 38.1 Concertina, 6 folds
1.67 50.8 38.1 Concertina, 3 folds
1.65 50.8 38.1 Concertina, 3 folds
1.67 88.9 38.1 Concertina, 5 folds

Table 7.1: Additional tests for axial collapse of tupes
(HT30 annealed aluminium)

7.3.1.1 EXPERIMENTAL PROGRAMME AND METHOD

The tests were performed on HT30 (BS1471) Aluminium alloy tubing.
This material has identical composition and similar mechanical
properties as the HE30 alloy used for the bar tension tests reported
in chapter 6. The as-received mechanical properties of HT30 are as
follow:

0.1% proof stress 228 -243 MPa
density 2700 Kg/m3
Young's modulus, E 67000 MPa
Poisson's ratio 0.3

Ultimate tensile strength 304 MPa
Elongation on 2 in. 7 - 9%

The slight variation in mechanical properties from those of HE30
is due to the different cold-forming processes: HT30 tubes are formed
by drawing, while HE30 bars are extruded.

The specimens were annealed prior to testing at a temperature of
3500 C for times ranging between 3 and 7 hours, depending on wall
thickness; all specimens were oven cooled.

The tubes were crumpled under stroke control using an Instron
Model 1195 press, with a 100 kN 1oad cell., The few specimens which
required larger loads were tested with a Losenhausen press.
Deformation rate was approximately 5 mm/min. Undeformed tube lengths



ranged between 6.35 and 533.4 mm.

7.3.1.2 TYPICAL EXPERIMENTAL RESULTS

The collapse modes obtained by Ghani (1982) may be grouped into
the following broad categories:

- Concertina (49 tubes); Axisymmetric, sequential folding starting at
one end of tube

- Diamond (5 tubes); Non-axisymmetric but sequential folding
accompanying a change in cross section shape

- Mixed concertina-diamond (44 tubes); starting as concertina and

changing over to the diamond mode after some folds
- Euler (31 tubes); buckling of tube as a strut
- Various crushing modes (60 tubes); simultaneous collapse of the

whole tube due to crushing, tilting, 2-lobe diamond, or simultaneous

concertina failure.

Figure 7.1 shows a selection of test results, featuring an
example of each of the collapse modes mentioned above. According to
the length/diameter and wall thickness/diameter ratios of the
undeformed tubes, a classification chart was drawn up (figure 7.2).
This diagram indicates distinct regions in which a certain collapse
mode can be expected.

Curves indicating the variation of axial 1load with axial
shortening of the tubes were plotted directly for all the tests. From
the analysis of these curves, the energy absorption characteristics
were obtained for the various modes of collapse.

Using the collapse mode regions defined in figure 7.2, tube
geometries can be selected for which one may expect concertina
sequential failure. The 5 extra tubes (table 7.1) tested for this
investigation were selected with such characteristics; they all
collapsed in concertina mode as expected. A typical result together
with the corresponding load-compression curve is shown in figure 7.3.
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7.3.1.3 MICROHARDNESS TESTS

Longitudinal sections of some tubes have been cut and
microhardness tests performed on them, in order to derive strain and
stress distributions which could be checked against numerical

predictions.

7.3.1.3.1 Equipment and procedure

A Reichert microhardness tester was used for these tests. It
consists in essence of a 1360 apex angle square pyrammid diamond
indentor, which can be pressed against the specimen with a specified
load, and then moved out of the way for measuring with a microscope

lens the size of the impression.

The microhardness Hp j5 defined as the mean pressure exerted on
the surface of the indentor. Simple geometrical considerations permit

the expression of Hy (kg/mm2) as a function of the applied load P (g)
and the indentation diagonal, d (microns):

Hy = 1854.4 P/d (7.5)

Although there is geometrical similitude between indentations of
different sizes, and contrary to what happens for (macro)hardness
(VPN) at higher loads, the microhardness is not independent of the
load applied. Hence an arbitrary constant load of 99 g was selected
for all the measurements.

The surfaces of the specimens were lapped prior to testing, in
order to obtain smooth, flat surfaces in which the microscopic
indentation measurements could be taken with sufficient precision.

Three crumpled tube specimens were selected for testing. The
original dimensions of these tubes were

- Ib
- ID

19.05mm, to = 1.64mm, L = 50.8mm (geometry A, sect. 7.3.3.1);

13.05mm, t5 = 1,17mm, L = 50.8mm (geometry B, sect. 7.3.3.2);



0D = 38.1 mm, to = 1.65mm, L = 50.8mm (geometry C, sect. 7.3.3.3).

In each case, the microhardness measurements were done only in an
area around one of the folds. The size of the indentation diagonals
varied between 50 and 70 microns; a separation of 200 to 300 microns
was left between different indentations in order to eliminate cross-
influences. Typical results for one of the above tubes are shown in

figure 7.4,

7.3.1.3.2 Derivation of material strength, Y

The strain-hardened flow stress Y is related to the hardness. For
a perfectly plastic material this relationship is linear (Hill (1950),
p260):

H=CY (7.6)

where C is a constant factor depending on the geometry of the indentor
and the angle of friction, which normally 1ies between 2.5 and 3.0.
For a smooth, flat die Prandtl's solution (sect. 5.4.1) yields

C = (2+m)/\{3 = 2.97

In the event of real materials with strain-hardening, egn. (7.6)
is not true in a strict sense. The plastic distortion around the
indentor is non-uniform and different elements harden by different
ammounts. Mean equivalent values of Y need to be used in eqn. (7.6);
determination of these mean values involves necessarily an
approximation and a certain degree of error. Nevertheless for metals
which are heavily pre-strained the error will be small, as:

a) the slope of hardening has diminished considerably;
b) the indentation strains are small with relation to the existing
strains.

The area around the folds in which microhardness tests were
performed has very high strains, in general upwards of 0.5.
Calibration data for the derivation of a linear relationship between
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Hm and Y were obtained from microhardness tests in transversal
sections of an annealed HE30 necked tension bars (chapter 6). This
relationship is valid as well for HT30, which after annealing has the
same mechanical properties as HT30 (see section 7.3.2.1).

For each section of the necked bar the strain can be computed
from eqn. (6.8); from the stress-strain relationship of the material,
eqn. (6.20), a value for the strength Y was found (table 7.2). A
linear regression was then performed through the (Hm,Y) data points
(figure 7.5). For the least squares fit the point corresponding to the
unstrained material has been disregarded as the region of interest is

at high strains. The relationship obtained,
Y = -38,5 + 0.35Hm (MPa) (7.7)
was then used to derive contour maps of the strain-hardened flow

stress Y (figures 7.13, 7.18 and 7.23), which could be compared
directly to those obtained from the computational model.

Section | Microhardness (*){ Original| Deformed | Strain Yield
Diameter{ Diameter Strength
Hm(MPa) Do(mm) D(mm) | €=-2Ln(D/Do)| Y=181.7¢.159
0 384 31.7 31.7 0.00 59.4(**)
1 493 16.2 15.0 0.15 134.4
2 522 16.2 14.8 0.18 138.3
3 509 16.1 14.3 0.24 144.8
4 540 16.1 14.0 0.28 148.4
5 565 16.0 12.4 0.51 163.2
6 638 16.0 9.2 1.11 184.7

(*) Microhardness values averaged from a minimum of 6 measurements

along two perpendicular radiuses of each section
(**) Strength for unstrained material corresponds to initial yield

Table 7.2: Microhardness, strain and stress values on transversal
sections of necked HE30 tension bar for calibration of
Microhardness-strength relationship
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7.3.2 NUMERICAL MODEL

The axial collapse of tubes was simulated using the 2-D
numerical code described in chapter 4, Axisymmetric continuum MTQC
elements (sect. 4.2.3) were used under an explicit time-marching

procedure.

The tubes were crushed between two platens; the bottom one was
fixed, while the top platen moved downwards, causing the tube to
collapse. The platens, as the rest of the tube, were modelled with
axisymmetric continuum elements. Interaction between platens and tube
as well as between tube folds themselves was considered through

numerical contacts (section 4.8).

In order for the calculations to be meaningful, it must be
checked that axisymmetric deformations are to be expected for the
particular tube geometry, e.g. by locating the appropriate point in
the collapse classification chart (figure 7.2). Non-axisymmetric modes
of collapse such as the diamond mode cannot be simulated, as axial
symmetry of deformation is imposed by the model. The analyses
performed here all corresponded to experimentally observed concertina

failures.

Apart from the axial symmetry, no further numerical constraints
were imposed upon the model, being completely free to develop its
preferred form of collapse (e.g. simultaneous, sequential) as well as
the number and length of folds. No geometrical imperfections were
introduced to trigger off buckiing modes. ‘Natural' imperfections were
provided by the random numerical roundoff errors.

The axial collapse of tubes is a fairly reliable and repeatable
mechanism (e.g. Ghani, 1982), indicating little sensitivity to
imperfections. In the numerical model, the imperfections depend on the
precision of the floating point arithmetic. A check was done, running
the same tube collapse model (TUBE7, see table 7.4), on a CRAY-1S (64-
bit floating point words) and on a VAX 11/785 (32-bit floating point
words). Results obtained were substantially identical. The deviation
from the energy balance condition was larger on the VAX (0.15% error
versus 0.005% error on the CRAY), but still within very acceptable
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limits.

7.3.2.1 DISCRETIZATION AND MATERIAL

Discretizations with varying fineness were used for the analyses.
The meshes employed may be grouped into the following categories:

- Coarse mesh, 3 quadrilateral MTQC elements through the thickness,

approximate aspect ratio 2:1 (largest dimension axially);

- Medium mesh, 3 quadrilateral MTQC elements through the thickness,
approximate aspect ratio 1l:1;

- Fine mesh, 4 quadrilateral MTQC elements through the thickness,
approximate aspect ratio 1:1.

The platens were discretized with two CST elements each in all
cases. They were assumed infinitely rigid, i.e. no deformations were
allowed.

Symmetric contacts (sect. 4.8) were used for the interaction
between opposite walls in the tube folds. Each interacting node is
included in two simultaneous numerical contacts: firstly as an
intruder on the opposite side, and secondly as part of a target side
being penetrated by the node opposite. This ensures fully symmetrical
behaviour in the interface algorithms.

For the contacts between tube and platens only the tube nodes
were considered as intruders; the lack of intermediate nodes in the
platens would have prevented otherwise. However, this 1is not
undesirable, as the contact between deformable tube and rigid platen
is naturally asymmetric.

For the material model, an elastic-plastic isotropic Von Mises
idealization was used. Elastic parameters were

Elastic modulus, E 67000 MPa
Poisson's ratio » 0.3

Strain-Hardening was considered with the power law obtained in chapter
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6 (eqn. 6.20):
Y = 181.7 €0-199 (Mpa)

The above hardening law was derived for HE30 annealed Aluminium bars.
HE30 and HT30 materials are identical aluminium alloys, except for the
fact that HE30 comes in bars (extruded), whereas HT30 comes in tubes
(drawn). After being annealed both materials can be assumed to have
the same mechanical behaviour.

In effect, differences due to cold-working may be banished in the
annealing process. According to Cottrell (1975), "work-hardening is
caused by the mutual obstruction of dislocations gliding on
interacting systems”. The annealing treatment produces recovery and
recrystallization processes. The recovery allows dislocations to move
out of the slip planes, disentangling and tidying-up the cold-worked
structure, while the recrystallization replaces the cold-worked grains
by a new set of more perfect grains, giving complete softening. As on
the other hand the differences due to cold-working were only minor, it
is justified to assume the constitutive laws derived for annealed HE30
valid for HT30 tubes as well.

7.3.2.2 VELOCITY SCALING (see also section 4.1.1)

Explicit time-marching procedures by their nature can only
perform dynamic analyses. Quasi-static or slow loading problems could
be solved in real time, but usually this becomes too expensive. For
reasons of numerical stability the maximum time-step is limited by the
Courant criterion, which is independent of the velocity of loading. In
quasi-static analyses such as these the calculations need to be
speeded up, which may be done by arbitrarily increasing the velocity
of deformation in the numerical model; this is called "“velocity
scaling".

For these calculations the crushing velocity employed was 20 m/s,
representing an increase of 5 orders of magnitude from the
experimental velocity. It will be seen (section 7.3.4.2) that the
overshoots and distortion introduced by this amount of velocity
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scaling were small. As there was no strain-rate hardening in the
material, the only additional safeguard needed was to ensure that
dynamic effects continued to play a small role in the mechanical
deformation process. Some criteria to quantify this role were given in

section 6.5.1.

The dynamic forces involved in the concertina crumpling may be
assessed with the following simple considerations. Figure 7.6 shows a
wall section in a tube which is being crumpled with an axial velocity
v. The portion of the tube already crumpled (below A) is stationary,
the undeformed portion above C moves with velocity v, and the folding
portion between A and C is being decelerated from v to 0. This
deceleration occurs in a time (h-2t,)/y, h being the fold length and
to the wall thickness; the average inertia force necessary is, by

virtue of Newton's second law,

P, = WDty phve/(h-2t,) (7.8)

where D is the mean tube Diameter and p is the mass density. Hence the
average dynamic forces grow with the square of the crushing velocity,
all other factors being constant for a particular tube.

The total force F exerted at the bottom surface equals the force

necessary for crumpling felt at D, P.  plus that necessary for

decelerating the fold ABC, Pi°

P =P, +Pj=P, + whtyovoh/(n-2t) (7.9)

C 1 c

The deformation velocity v used in the calculations was chosen so

as to produce acceptably small dynamic distortions (Pi < 5%Pc’e These
dynamic effects are quantified in section 7.3.4.2, where the influence

of the velocity scaling is discussed.

7.3.2.3 INTERPRETATION OF QUTPUT

Load-compression curves obtained from numerical analysis
needed some post-processing (averaging and filtering) in order to

facilitate their interpretation.
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Firstly, a representative value of the load was taken as the
average between the loads measured at the top and bottom platens at
each instant. In a quasi-static situation the difference between both
measurements would be negligible. Here, due to the velocity scaling,
there were finite, although small, differences between the two end
loads.

Secondly, high-frequency oscillations in the load histories
arising from stress-wave propagation between the two extremes of the
specimen were filtered out, using a centred moving average filter (see
below). Again in a true quasi-static model this would not be
necessary; for each load increment, the new displacements are those
that fulfill static equilibrium. It is assumed that the stress waves
have travelled back and forth along the specimen many times,
redistributing stresses, and eventually damped out.

The velocity of deformation has been greatly increased here,
while the information (stress waves) continues to be transmitted at
the same speed. On the other hand, there are steep changes in load due
to the buckling instabilities and rapid variations in boundary
conditions {contact-impact). Whereas in the real - slow loaded -
specimen there is still time for numerous stress waves to transmit
these changes smoothly enough, here they are transmitted more abruptly
as finite amplitude dynamic pulses, occasioning visible oscillations
in the load curves. As long as the amplitude of these oscillations
remains small relative to the total loads, their distortive influence
is not important, and the underlying trend in the load curves may be
recovered by filtering them out.

High frequency filter (centred moving average)

Centred moving average techniques are simple and effective for
high frequency filtering. From a given time series Xxj  i=1 to N, with
constant time interval At, a new filtered time series is defined as

i+M
Yi = 1 Xj M<i<N-M (7.10)
2M+1  i1-M

This filter removes frequencies higher than 1/(2MAt). The values

186



of M were chosen so as to remove oscillations occasioned by stress-

wave propagation.

7.3.3 RESULTS FROM NUMERICAL CALCULATIONS AND EXPERIMENT

Numerical results are presented here and compared with
experiment, for the axial collapse of 4 different tube geometries:

Tube geometry A, ID=19.05mm, t0=1.64mm, L=50.8mm;
Tube geometry B, ID=19.05mm, t,=1.17mm, L=50. 8mm;
Tube geometry C, 0D=38.10mm, t0=1.65mm, £L=50.8mm;
Tube geometry D, 0D=25.40mm, t,=0.95mm, L=25.4mm.

]

Other auxiliary calculations were necessary first in order to
test the influence of various parameters and choices:

velocity of deformation;

mesh refinement;

friction;

element type.

Results from these auxiliary calculations are discussed in section
7.3.4. In total over 20 calculations of the complete tube crumpling
process for 6 different tube geometries (table 7.4) were carried out

successfully.

Mesh refinement was found to have an important effect upon the
results (section 7.3.4.3). However, due to the high computer costs
involved in these analyses, some of the meshes used could not have the
maximum desirable fineness. Two of the models presented below have a
“fine" mesh, while the other two have “"medium" meshes.

The numerical predictions are presented together with the
corresponding experimental results. The tests were described in
section 7.3.1.

The computer used for the numerical work was a CRAY-1S of the
University of London. Central Processing Unit (CPU) times quoted refer
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to this machine.

7.3.3.1 TUBE GEOMETRY A: ID=19.05mm, t,=1.64mm, L=50.8mm

A "fine" mesh was used for this analysis, comprising 633 nodes
and 996 triangular cells (fig. 7.7.a). The calculation proceeded for
95789 time-steps, up to an axial compression of 37.5mm, forming 3
concertina folds: firstly at the bottom end, then at the top, finally
in the middle (fig. 7.7b). CPU time for this calculation was 8641
seconds.

In the experiment, the tube collapsed forming 3 concertina folds
as well, with a shape very similar to the numerical prediction
(figures 7.8, 7.9). Figure 7.10 contains the load-compression curves
(numerical and experimental), which show a remarkable agreement.
Average collapse loads were 12.2 kN for the calculations and 11.9 kN
for the experiment. The succession of peaks and valleys in the 1oad
curves is due to the alternancy between axial compression (stiffer
peaks) and bending (less stiff valleys) mechanisms. The snapshot views
of the mesh at different points included in figure 7.10 confirm this
explanation, providing a detailed description of a phenomenon
previously observed experimentally in a forcefully more qualitative
manner (Ghani, 1982).

The numerical load-compression curve in figure 7.10 was obtained
by averaging and filtering the raw data as explained in section
7.3.2.3. To show the effect of this averaging-filtering process,
individual load curves obtained directly at the top and bottom platens
are presented in figure 7.11. These curves show some small transient
imbalances due to the velocity scaling. The underlying quasi-static
trend is seen more clearly when this noise is filtered out (fig.
7.10).

The various energy components were monitored (sect. 4.10) during
the calculations (fig. 7.12). the energy of deformation in fig. 7.12
comprises plastic work, recoverable elastic energy, and energy
dissipated through friction (some 1.4% of the plastic work at the end
of the analysis). In order to provide a check for the stability of the
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computations, the work done by the external forces was computed
independently and compared to the sum of the deformation and kinetic
energies. Within the precision of the figures (5 digits) no difference
was perceived between both values, indicating absence of instabilities

and soundness of numerical integration algorithms.

Contour maps of the Von Mises flow stress (Y), from the numerical
model and experiments, are presented in figure 7.13. The experimental
data were derived from microhardness tests, as laid out in section
7.3.1.3. Similar patterns and levels of stress can be observed for
both cases, although somewhat steeper gradients and a wider range of
values is appreciable for the experiment. This is due on the one hand
to the higher curvature for the experimental fold selected, and on the
other hand to the relative coarseness of the numerical mesh. Agreement
for all these local effects would need an inordinate degree of mesh
refinement. Considering the uncertainties of the microhardness
measurements and of their correlation to the material strength, VY,
this level of agreement was deemed very good.

7.3.3.2 TUBE GEOMETRY B: ID=19.05mm, t,=1.17mm, L=50.8mm

This problem was discretized with a mesh of medium fineness,
comprising 532 nodes and 784 triangular cells (figure 7.14a). 99503
computational time-steps were needed for an axial compression of 40
mm. 3 full concertina folds plus a fourth incomplete fold were formed
(figure 7.14b). The order of formation was: bottom, top, second from
bottom, second from top. CPU time consumed was 7176 seconds.

In the corresponding experiment 4 full folds were formed in the
tube (figures 7.15, 7.16). The discrepancy between experiment and
calculation in the fourth fold arose from an overprediction of the
fold length in the numerical model. The first 3 folds spanned an
excessive tube length, not leaving enough for the natural formation of
a fourth fold. The reason for this overprediction is an excess
stiffness of the model, caused by the coarseness of the discretization
employed. Convergence towards the experimental behaviour was observed
from a previous analysis of this same problem with a coarse mesh
(section 7.3.4.3). No further refinements of the mesh were performed
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in order to avoid excessive computer costs.

Further insight into the behaviour of the model may be gained
from the load-compression curves (figure 7.17). Similar load levels
and patterns of rises and falls in the curves were obtained in
experiment and calculation. However, the separation between successive
peaks is greater for the numerical model, indicating longer folds. For
the last fold the length of tube remaining is too short. A very stiff
final fold is then formed, with a large degree of shear deformation.
Computed load levels become here much greater than experimental ones.

Neither the individual unfiltered load-compression curves for
both platens nor the energy balance graph, given for the previous
analysis (tube geometry A)in figs. 7.11 and 7.12, are given for this
or the following tube analyses (geometries B, C, D). The story told by
these graphs is much the same as for tube geometry A,

Numerical and experimental contour maps of Von Mises strength, VY,
are given in figure 7.18. As for tube geometry A, similar levels and
patterns of stress may be appreciated in both maps. Again, the
gradients for the experimental contours are steeper.

7.3.3.3 TUBE GEOMETRY C: 0OD=38.1mm, t,=1.65mm, L=50.8mm

A "fine" mesh was used for this analysis, with 633 nodes and 996

triangular cells. The initial and final configurations of the mesh may
be seen in figure 7.19. One concertina fold was formed at either end
of the tube. As for the previous analysis, the length of the folds was
overpredicted, leaving too little tube length left for the proper
formation of a third fold in the middle. Although at one point it did
seem that a third shorter fold would be formed, eventually this
mechanism proved too stiff and the model failed through shear near the
top.

The experimental results did not show this behaviour, producing 3
compiete folds (figures 7.20 and 7.21). The load-compression curves
(figure 7.22) show that, although somewhat translated to the right for

the calculations, a great similarity exists between the experimental
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and numerical load pétterns for the first fold. The deformation
process can be clearly understood by examining the snapshot views of
the mesh included in figure 7.22. At point A in the figure, after the
b ending and sliding of the top edge, contact has been made between the
outer wall of the tube and the top platen, occasioning a sharp
increase in load. The edge then separates slightly from the top platen
leaving only the outer fold surface in contact with the platen. With
further compression the fold continues to bend until the bottom part
of the fold hits the top edge. This produces a ripple clearly
noticeable in both experimental and numerical load curves (B). The
bottom part of the fold then pushes the edge up until contact with the
top platen is renewed. The 10ad increases steeply for a moment when
the tube deforms in axial compression, until the bottom edge starts
slipping (C) and bending to form another fold (D). The last fold is
ready to be formed at E, but the remaining tube length has become too
short. A very high 1oad is necessary, which eventually levels off as
shear failure occurs.

The numerical and experimental maps of Von Mises strength (Y),
given in figure 7.23, indicate again similar stress distributions
around a fold. They also show the same pattern as the two previous
analyses.

7.3.3.4 TUBE GEOMETRY D: 0D=25.4mm, to,=0.95mm, L=25.4mm

The mesh employed for this problem was of medium fineness, with
332 nodes and 484 triangular cells (figure 7.24a). A drawing of the
deformed mesh after an axial compression of 20.2 mm is given in figure
7.24b, showing 2 concertina folds. 53554 computational cycles were
performed, using 2664 CPU seconds.

the experimental results, shown in figures 7.25 and 7.26, proved
again to be slightly less stiff than the computational model. In the
experiment, after the first 2 folds, some extra length remained to
form another half fold. Load compression curves for experiment and
calculations are given in figure 7.27. In a way the comparative
behaviour here is the inverse of that reported for the previous two
analyses. Here it is in the experiment where a shorter length of tube
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remains at the end, dccasioning stiffer behaviour., The stiffening is
not so tragic though, because the extra length occurs at one end; this
end eventually slipped towards the outside rounding off its inner edge
through friction with the platen. The numerical model does not have
enough definition to represent these edge effects. It settles for two
slightly longer folds than what would be preferred.

the evolution of the load curves (fig. 7.27) for the first fold
show again the same similarities between experiment and calculations
as for tube geometry C (sect. 7.3.3.3), and they may be explained in
identical fashion (points A,8,C,D,E,F in fig. 7.27).

7.3.4 PARAMETRIC STUDIES IN NUMERICAL ANALYSES

The influence of the following parameters and
modelling choices upon calculation results is studied:

- Coefficient of friction for tube-tube and tube-platen contacts;
- Velocity scaling;

- Mesh refinement;

- Element type.

The aim is to obtain numerical feedback, in order to select the
characteristics of the models to be employed in the numerical
analysis.

Some of the analyses presented here correspond to tube geometries
already mentioned in section 7.3.3 (A,B,C,D); there the final analyses
were presented. Here the results of preliminary analyses (table 7.4)
are considered.

7.3.4.1 INFLUENCE OF FRICTION

A Coulomb law of friction was used in the numerical model
(section 4.8.1). The tangential force Ft at the interface is Timited
by the normal force between the surfaces in contact, Fn, and the
coefficient of friction, pu:
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Frp € BF, (7.11)

An experimental determination of the frictional behaviour of the
surfaces and materials 1involved was not attempted within this
investigation. In a strict sense, the perfect friction given by the
Coulomb law is not applicable for all types of surfaces and arbitrary
acting normal pressures (Curnier, 1984). This idealization represents
an approximation to the friction phenomenon, consistent with our lack
of knowledge and experimental data about it.

The influence of the variation of the coefficient of friction was
studied by performing several tube collapse analyses on the same model
(Tube geometry E, fig. 7.28). Values for pu ranged between 0.0
(frictionless) and 0.3. The results are summarized in figures 7.29 and
7.30. For comparison, the corresponding experimental results are also
included in figure 7.29; the collapse geometry obtained experimentally
consisted of 3 1/2 concertina folds.

The collapse of the frictionless model was considerably different
from the other models and from the experimental results, producing
only two large concertina folds. The other models all produced three
folds and load-compression curves similar to each other. The results
for = 0.2 and pu= 0.3 were particularly close. A tendency for
shorter fold lengths is observed as friction decreases. This can be
attributed to edge effects, considering that for this particular
problem two out of the three folds occur at the tube ends, where the
constraint is smaller the less friction between tube and platen.

The reason for the difference between experimental and numerical
results is that the numerical model was insufficiently refined in
terms of the “coarse" mesh used and velocity scaling (40m/s platen
velocity). As will be seen in further sections, more refined models
are necessary for good predictions. However, for the parametric
studies a large number of computer analyses was necessary, and cost
considerations forced compromises in the model refinement.
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7.3.4.2 INFLUENCE OF VELOCITY SCALING

The calculations presented in section 7.3.3 all had an axial
velocity of deformation of 20 m/s, representing a scaling.up of the
experimental velocities of five orders of magnitude. Some results are
presented here studying the influence of varying the crushing velocity
in the model, justifying the choice made for the final analyses in
section 7.3.3.

Three analyses were performed with velocities of 10, 20, and 40
m/s on the same model as sect. 7.3.4.1 (tube geometry E, fig. 7.28).
The value of the friction coefficient was selected as p=0. 2. The
results are summarized in figures 7.31 and 7.32. A ramp was introduced
in the applied velocity history for the beginning of the deformation,
the velocity increasing from O to its final value in 0.1 msec. This
was found to produce a smoother start for the deformation and fewer

initial oscillations.

A1l three analyses produced 3 concertina folds in the tube. The
third central fold was slightly shorter for 20 m/s and 10 m/s than for
40 m/s. In the load-compression curves (fig. 7.31), some difference is
noticeable when the velocity is decreased from 40 m/s to 20 m/s, but
further reduction to 10 m/s produced very little difference. The
average collapse loads show a monotonic decrease towards the
experimental value, again the results for 20 m/s and 10 m/s being very
close.

The criterion proposed in section 7.3.2.2 for evaluating the

dynamic forces involved in the wall crumpling, Pj» may be used here.
From equation (7.8), the following results were obtained:

expt

v=40 m/s Pi=0.737 kN (8.2% of Pc ")
v=20m/s Pi=0.184 KN  (2.0% of PS*PY)
v=10m/s Pi=0.046 kN  (0.5% of PSXPY)

Judging from these results, a velocity of 20 m/s was selected for
the final analyses. The inertia forces introduced by this velocity
scaling were small. Only marginal improvements are produced when the
velocity is further reduced, while computational costs grow rapidly
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(1758 CPU secs. for 20m/s, 3474 CPU seconds for 10 m/s).

7.3.4.3 INFLUENCE OF MESH REFINEMENT

The influence of mesh refinement in three different cases was
studied (tube geometries A, B, and C). These models have already been
discussed in section 7.3.3, where results for the more refined meshes

considered here were given.

For tube geometry B (fig. 7.14a, sect. 7.3.3.2), two analyses
with "coarse" and "medium" meshes were done; some results are
presented in fiqures 7.33 and 7.34. As can be seen, the mesh
refinement had a dramatic influence, increasing the number of folds
from 3 (coarse mesh) to 4 {(medium mesh), more in line with the
experimental results. The 1oad-compression curve shows clearly the
shorter length of folds for the more refined model. Still the fold
length was slightly overpredicted for the medium mesh, the 4th fold
being a very short and stiff one which eventually fails by shear.
Further refinement of the mesh would probably achieve better results.

For tube geometry A (sect. 7.3.3.1, fig. 7.7a) three different
mesh grades were used: "coarse", "medium" and "fine". The results,
presented in figures 7.35 and 7.36, are very illustrative; mesh
refinement produces a clear and consistent convergence towards the
less stiff experimental values. The fold lengths are indicated by the
position of the valleys in the load-compression curve; these are
consistently shifted towards the left as the mesh is refined,
increasing the available length for the last fold. As this last fold
grows nearer to its "natural" unconstrained length, the energy - and
thereby the force - involved in its formation decreases. A monotonical
approximation of the load levels produced in the last fold towards the
experimenfal values is apparent as the mesh is refined.

Lastly, for tube geometry C (sect. 7.3.3.3, fig. 7.19a), "coarse"
and “fine" mesh analyses were performed. The results (figs. 7.37,7.38)
follow a similar pattern to those outlined for the previous two cases:
a decrease in the overpredicted stiffness and fold length with mesh
refinement. As for tube geometry B (figs. 7.33, 7.34), the coarse mesh
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a) COARSE MESH (TUBE'!9

b) FINE MESH (TUBEZ21)

Figure 7.38: FINAL DEFORMED VIEWS FOR VARIOUS DEGREES OF
MESH REFINEMENT - 0D=38.1mm, t,=!.65mm, L=50.8mm
(tube geometry C)



model missed one fold altogether. With the fine mesh some more length
was available for the third fold, and its formation was attempted.
However the model was still somewhat overstiff; the length of tube
left over for the third fold was too short, and a shear failure

mechanism was preferred finally.

7.3.4.4 INFLUENCE OF ELEMENT TYPE

A1l the analyses reported above used the Mixed Triangle-
Quadrilateral with Correction (MTQC) elements, proposed in section
4.2.3. Here an attempt is made to assess the behaviour of these new
elements when compared to the previous Mixed Triangle-Quadrilateral
(MTQ) elements (section 4.2.2) and Constant Strain Triangles (CST)
(sect. 4.2.1).

It was mentioned in section 3.7.1 that CST meshes impose an
excessive number of volumetric constraints and therefore become in
practice artificially stiff for incompressible plastic flow. Mesh
refinement does not solve the problem, failing to converge towards
true solutions. MTQ elements solve this problem by reducing the number
of volumetric constraints, but for very large deformations tangling
over of the mesh can occur, creating unacceptable negative volumes. A
correction to prevent this tangling over was proposed in section 4.2.3
with the MTQC elements.

The convergence of MTQC meshes has been proved in the previous
section 7.3.4.3, where successively finer meshes were shown to
approach monotonically the experimental results. Nevertheless, it
seems inevitable that some stiffening be introduced by MTQC elements.
The aim here is to check, for practical large deformation plastic flow
problems, that this stiffening is small. If so, it will be proved that
MTQC elements retain the advantages of MTQ elements while at the same
time providing a more robust model.

It must be mentioned that all the low velocity tube collapse
problems considered could be analyzed successfully with MTQ meshes.
Although in other cases negative volumes did occur (section 7.4.4), no
problems arose here due to the lack of boundary constraints and the
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low deformation velocities.

The “coarse” mesh tube model (tube geometry E, fig. 7.28a) was
analyzed with MTQ and MTQC elements. Load-compression curves for both
calculations are shown together with the experimental results in
figure 7.39, where 1little difference can be appreciated between the
two calculations. The lower value of the minimum loads at the valleys
for the MTQ mesh denotes a lower resistance to high curvature bending
at folds. This is corroborated by inspection of the deformed shapes
(figure 7.32a, 7.32d)

The same comparison as above was done for tube geometry B (fig.
7.14a). Results for coarse meshes with MTQ and MTQC elements are
presented in figures 7.40, 7.34a and 7.34c. It was seen in the
previous section 7.3.4.3 that the MTQC coarse mesh failed to develop
the fourth fold which was observed in experiment. A slightly better
behaviour in this respect was obtained from the MTQ coarse mesh, For
the first three folds the length is very slightly shorter than for the
MTQC mesh. Some extra length is left over after the first three folds,
but still too short for the fourth fold, evantually failing in a high
curvature hinge, The improvement however is far from that obtained
with a finer mesh (fig. 7.12b) where a fourth fold was formed. Again
softer bending behaviour is appreciated for MTQ.

Finally the effect of different element types was studied for
tube geometry A (fig. 7.7a). Calculations were carried out with CST,
MTQ, and MTQC medium meshes, the results being shown in figures 7.41,
7.36b, 7.36d, and 7.36e. The great overstiffness of the CST mesh is
immmediately apparent. The model is completely unable to represent the
concertina mechanism and buckles into one large fold (fig. 7.36e) with
substantially higher loads (fig. 7.41). For the Mixed discretizations
MTQ and MTQC, no advantage is apparent for MTQ as to fold lengths in
this case. An excessively soft behaviour in high curvature bending is
exhibited by MTQ elements.

One practical disadvantage of MTQ over MTQC elements is that,
even without developing negative volumes, some triangular cells may
become very small in size. As it is cell size which governs the
computational time-step, this means increased cost of analysis. In
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general it was found that refining MTQC meshes was a more consistent,
robust and cheaper method of improving the results than using softer
MTQ meshes. This is clearly exemplified in figure 7.42, where the
load-compression results for a MTQC fine mesh (8641 CPU sec) are
clearly far better than those for a MTQ medium mesh (12882 CPU sec) at
approximately 2/3 CPU cost.

7.3.5 DISCUSSION

The quasi-static axisymmetric crumpling of tubes has been
modelled successfully. Results for four tubes are given in section
7.3.3 and compared with experiments. Generally load-compression
curves, deformed geometries, and stress distributions showed good
matching between predictions and experimental results.

Nevertheless a consistent tendency for overstiff solutions is
present to a greater or lesser degree in most of the calculations. The
load levels predicted in the load-compression curves are very close to
the experimental values, but the predicted fold lengths are often too
great. Two factors may be the cause of these differences: coarseness
of the meshes and edge effects.

Finite element solutions give always upper bound energy
approximations (Zienkiewicz, 1977), approaching gradually the true
solutions upon mesh refinement. In section 7.3.4.3 it was shown that
MTQC meshes did converge towards the experimental results. Some of the
calculations would have benefited from finer meshes, although this was
not attempted for reasons of cost.

Edge effects played an important role in most of the problems
analyzed, where the number of folds produced varied between 2 and 4.
Out of these, 2 folds occur always at the ends and may be heavily
influenced by the interaction between platen and edge of tube. A
complex plastic deformation process occurs at the tube edges when
sliding against the platens, creating a characteristic rounded shape
(figure 7.43a), which is not modelled properly by the meshes employed
and the discrete contacts with Coulomb friction (figure 7.43b).
Accurate representation of this phenomenon together with the overall
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a) experimental shape

b) Calculated shape (TUBEZ21)

Figure 7.43%: Local deformation from sliding at tube edges
(0OD=38. Imm, To=1.65mm, L=50.8mm Tube) (geometry C)



crumpling analysis needs such locally fine meshes that computations
would become uneconomic. This edge misrepresentation is bound to have
a stiffening effect upon the end folds, therefore increasing the fold

length.

The number of folds and the average collapse forces obtained in
the calculations are compared with experimental results and
predictions from Alexander (1960) (eqs. 7.2, 7.3) in table /.3.
Alexander's theory gives poor predictions as to the fold length for
the thick tubes with high t,/p ratios. This is probably due to the
inadequacy for thicker tubes of Alexander's hinge/thin shell model.
The average load predictions are closer to the experimental values.
One must bear in mind however that a fairly arbitrary average value
for Y was selected for equation (7.2).

Tube geometry no. of folds av. collapse load

eq(7.3)] expt |calc [eq(7.2)] expticalc
(*)

) 1D=19.05mm, to=1-64mm,L=50.8mm 4.8 | 3 | 3 | 9.6 [11.9]12.2

(A
(B) 1D=19.05mm,t5=1 17mm,L=50.8m] 5.6 | 4 | 3.5| 5.8 | 6.5{ 7.7
(C) 0D=38.1 mm,to=1-65mm,L=50.8m| 3.4 | 3 | 2.25 13.6 |13.8]16.1
(D)

0D=25.4 mm,t520,95mm,L=25.4m 2.7 | 2.5 2 4.8 | 4.5/ 4.8

(*) for Y=175MPa, corresponding to 0.8 strain

Table 7.3: Summary of results for axisymmetric axial crumpling of
tubes from theory by Alexander(1960), experiments, and
numerical calculations.
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Anal. Geom, Mesh Element] Frict.] Platen{no of | Avge. CPU
(+) (++) type (k) |veloc. {folds | Load P | (sec)

(84) (m/s) kN) (%) (**)
TUBEL E | Coarse,60x3 { MTQC 0.0 40(&)) 2 10.2 1040
TUBE2 E { Coarse,60x3 | MTQC 0.1 40(s)f 3 11.7 1414
TUBE3 E Coarse,60x3 | MTQC 0.2 40(&)} 3 11.4 1364
TUBE4 E | Coarse,60x3 } MTQC 0.3 40(&)) 3 11.4 962
TUBES E | Coarse,60x3 | MTQC 0.2 40 3 10.5 1079
TUBE® E | Coarse,60x3 | MTQ 0.2 40 3 9.9 1196
TUBE? E | Coarse,60x3 | MTQC 0.2 20 3 10.0 1758
TUBE8 E | Coarse,60x3 | MTQC 0.2 10 3 9.8 3474
TUBE9 F | Coarse,100x3] MTQC 0.2 20 5 10.2 5333
TUBE10 B | Coarse,65x3 | MTQC 0.2 20 3 7.2 2263
TUBE11l B | Coarse,65x3 [ MTQ 0.2 20 3 7.3 3734
TUBE12 B | Medium,130x3[ MTQC 0.2 20 3 1/21 7.7 7167
TUBE13 A | Medium,90x3 | MTQC 0.2 20 3 12.9 3352
TUBE14 D | Medium,80x3 | MTQC 0.2 20 2 4.8 2664
TUBE15 A | Fine, 124X3 | MTQC 0.2 20 3 12.2 8641
TUBE16 A | Medium,90x3 | CST 0.2 20 1/2 22.2 2346
TUBE17 A | Coarse,45x3 | MTQC 0.2 20 2 172} 14.3 1035
TUBE18 A | Medium,90x3 | MTQ 0.2 20 3 11.5 12882
TUBE19 C | Coarse,60x3 [ MTQC 0.2 20 2 14.8 1530
TUBE20 C | Fine, 124x4 [ MTQC 0.2 20 2 1/2| 16.1 71732

(+) Geometry

Geometry

Geometry

Geometry

Geometry

Geometry

A: ID=19.05mm,
B: ID=19.05mm,
C: 0D=38,10mm,
D: 0D=25,40mm,
E: 0OD=38,10mm,
F: 0D=38.10mm,

t0=1.64mm, L=50.8mm
to=1.17mm, L=50. 8mm
t0=1.65mm, L=50, 8mm
t,=0.95mm, L=25.4mm
ty=1.22mm, L=50.8mm
ty=1.22mm. L=88.9mm
) For classification of meshes see section 7.3.2.1

Table 7.4: Details of numerical analyses for axial tube collapse

232



The numerical model is not constrained by beam or thin shell
assumptions, and therefore finds no problems in modelling the thick
tubes, where in fact it gives better predictions. The load resuits are
overstiff in all cases; however, for the second and third tubes in
table 7.3 the relatively large difference with experiment is due to
the shorter, stiffer incomplete folds at the end of the analysis.

7.4 MEDIUM VELOCITY (176m/s) TUBE IMPACT ANALYSIS

The impact of medium velocity hard and soft missiles on
structures has been the object of some interest in the past few years.
Extensive programs of experimental research have been undertaken at
Meppen, FDG (e.g. Rudiger and Riech, 1983) and Winfrith, UK (e.q.
Barr, 1983a, 1983b). The research is concerned with “"medium" and "low"
velocity impact, for which strain-rate effects are moderate.

A crashing aircraft consists principally of a soft tubular body
with some smaller hard or semihard parts. It has been modelled at
Winfrith and Meppen by tubular capped steel missiles with added
masses, impacting at velocities between 150 and 300 m/s. In general
the impact of such missiles produced concertina type crumpling. The
axial direction of the impact and the extensive crumpling produced has
prompted some one-dimensional empirical-numerical solutions (e.q.
Bignon and Riera (1979), Hurley (1983)). These solutions, however,
depend heavily on the interpretation of empirical data from crushing
loads and strain-rate effects on collapse mechanisms, not providing
therefore true general predictions.

The numerical procedures described in this thesis (chapter 4) are
suitabie for modelling the extensive axisymmetric crumpling produced
by the impact of a tubular steel missile against a rigid surface. Such
an analyéis, corresponding to Winfrith experiment no. M111l, is
described here,

7.4.1 DESCRIPTION OF PROBLEM

The missile (fig. 7.44) consists of a thin spherical cap followed
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by a pipe and, eventually, an end mass. The pipe is composed of two
parts, each with a different thickness and slightly different material

properties.

The missile was constructed of cold rolled mild steel sheet;
apart from this fact, other explicit material data were scarce, being
limited to the values of the yield stress and elongation at failure:

thickness Yield stress Elongation at failure
1.6 mm 308 MPa 29%
2.5 mm 270 MPa 24%

The missile impacts the target plane normally, with an axial
velocity of 176 m/s. The target plane is assumed both rigid and
frictionless.

7.4.2 NUMERICAL IDEALIZATION

Because of the axisymmetric character of the problem, MTQC toroidal
elements (sect. 4.2.3) can be used to represent the body. The mesh
consisteq of 3901 nodes and 5771 triangular plane cells (2887 MTQC
elements) (figures 7.45 and 7.46). The mesh was prepared using two
quadrilaterals through the thickness of the spherical cap. In the tube
section, three quadrilaterals through the thickness with approximate
shape ratio 2:1 were taken, in order to represent accurately the
concertina folding expected. For a small furthermost part of the tube
where bending was not expected, the mesh was coarsened to two and one
guadrilaterals through the thickness. The makeweight was represented
with larger solid elements having the appropriate mass. The target was
modelled as a rigid, frictionless stonewall.

The steel material was assumed to have a density of 7800 Kg/m3,
and an elastic-plastic stress-strain behaviour. The elastic part is
characterized by a Young's modulus of 210 GPa and a Poisson's ratio of
0.3.

The plasticity was described by a Von Mises Yield surface and an
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associative law. However, the radius of the Von Mises cylinder is not
constant but changes with plastic strain and with strain-rate. At each
time, the effective stress at yield is affected by a power law strain-
hardening and a power law correction for strain-rate sensitivity,
according to the expression:

Y = Ae™1 +éMB)

where A and n describe the hardening behaviour
for t,=1.6mm (thinner pipe) A=495 MPa, n=0.17
for to=2.5mm (thicker pipe) A=470 MPa, n=0.17
B and m represent the strain-rate sensitivity
for both cases B=40.4 sec-M, m=0.2

7.4.3 NUMERICAL RESULTS

The ana]yéis was performed on a PRIME 750 computer. It was
pursued up to a time of 2.5 msec, being interrupted then because of
two reasons:

- the computer costs had become excessive, over 39 CPU days;

- further deformation of the missile would only involve repetition of
the concertina folding mechanism already observed; not much additional
information would be gained from the continuation of the analysis.

The number of computational cycles was 111336. Successive views
of the deformed mesh are presented in figures 7.47 - 7.53 (details of
missile tip) and 7.54 (general views). It can be seen that after an
initial stage in which the spherical cap buckled inwardly (fig. 7.47),
the rest of the deformation consists of the piling up of successive
concertina folds (18 in total). All the folds were produced in the
thinner tube section, the thicker part not having being reached at the
time the analysis was stopped.

The resultant of the contact forces between missile and stonewall
is plotted in figure 7.55 as a history of time. The initial part, up
to 0.2 msec, corresponds to the buckling of the spherical cap, and is
characterized by being very “noisy". The remainder consists of a
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number of peaks, two per full concertina fold. For each fold two
hinges are formed: one external and one internal. The bending in these
hinges corresponds to the less stiff periods (valleys), while for the
periods in between, the loads are transmitted by the much stiffer

axial compression mechanism (peaks).

The force was integrated with respect to time, obtaining the
impulse history (figure 7.56). This constitutes a much smoother and
nearly linear curve. It indicates a fairly constant collapse force.

Velocity histories are presented in figure 7.57 for two
representative points. One corresponds to the back end of the missile,
showing an approximately constant average deceleration. The second
point corresponds to the folded section, showing an initial stage of
slow deceleration followed by a sudden stoppage in the formation of
the fold, continuing at zero velocity thereafter.

Finally, histories of effective stresses are given in figure 7.58
for a point near to the nose which has suffered substantial plastic
deformations in the folding, and for another point near the back which
has behaved elastically, without reaching yield.

7.4.4 DISCUSSION

The concertina axisymmetric crumpling has been modelled on a
large scale without any computational problems (apart from the cost),
proving the robustness of the numerical algorithms and computer code.
The sequential folding process is apparently very similar to the
mechanisms already discussed for quasi-static analysis. However,
considerably larger crushing load levels were observed for medium
velocity crumpling than for quasi-static situations.

The experiment no. M11l at Winfrith produced 23 folds in the thin
section of the tube and 6 further 4-lobed folds in the thicker
section, leaving an undistorted tube length of 550 mm; contact time
was 9.5 msec {data from Hurley, 1983).

The average fold length obtained in the experiment from the
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thinner pipe front section was

hexp = 27.2 mm

This compares with an average value (based on 18 folds), obtained in
the calculations of

hcale = 25.5 mm

while the value obtained from equation (7.3) by Alexander (1960) is

hatex = 29.3 mm

Initially it was attempted to solve the problem with a mesh of
MTQ elements (sect. 4.2.2). Although these elements worked
satisfactorily for low velocity crumpiing analyses (section 7.3.4.4),
they proved unsuitable for this problem in which the velocity of
deformation is substantially greater. Tangling over of the mesh
occurred in the formation of the first fold, producing a negative
volume in one of the triangular cells on the inner side of the fold
(figs. 7.5%a, 7.59b). This caused the computations to become unstable
immediately (fig. 7.59c).

Previously, similar problems had been often observed when using
Mixed Discretization procedures (MTQ in 2-D, MTB in 3-D) for very
large deformation analyses, constituting a drawback for these
procedures. It was this particular case which motivated the present
research to find a corrected element; this element should preserve the
capability for modelling incompressible plastic flow of the existing
Mixed Discretization elements, but generating a greater resistance to
tangling over. The result was the corrected mixed elements (MTQC in 2-
D, MTPC in 3-D) presented in section 4.2.3, which have been used for
this analysis.

The history of loads obtained from the calculations was
substantially "noisier" than the experimental history (figure 7.55).
Two factors are the cause for this difference. Firstly the finite rise
time for the load-cell used in the experiments will have probably made
it miss some of the very fast transients, although unfortunately no
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data are available to quantify this hypothesis. Secondly, the great
number of artificial contact springs in the numerical model may have
introduced some additional noise into the elastic folded region, which
working in a linear non-dissipative regime, is naturally "noisy" on

its own.

However, the time-average values of numerical and experimental

loads proved to be remarkably close:

338.4 kN
= 329.6 kN

0]
hod
©
p=
]

These averages were taken for the period comprised between 0.2 and 2.5
msec, which corresponds to the axisymmetric crumpling of the tube
after the initial buckling of the spherical cap.

The dynamic inertia force from the deceleration of the folds was
computed according to egn. (7.8); the velocity v(t) introduced in this

equation was the history of velocities at the top node (node 3890,
figure 7.57). The time average of this inertia force, again referred
to the period 0.2-2.5 msec, was

Py = 179.3 kN
which, substracted from the value of the total force, P=329.6 kN,
according to eqn. (7.5) leaves an average crushing force of

Pe = 150.3 kN

From these values it is apparent that the dynamic effects were
important for this problem, the inertia forces being approximately 1/2
of the overall total forces, and of the same order as the forces

originated by the crumpling process itself.

It is not possible to compute precisely the mean crushing force
resulting from experiment as no data exist for velocity histories of
the missile during the impact. However, the following considerations
support the assumption of the experimental and numerical crushing
forces being very similar. According to egn. (7.9) the crushing force,
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Pcs May be expressed as the difference between the total force, P, and

the inertia force, P; It was seen above that the difference between
experimental and numerical average total forces was small (2.6%). On

the other hand, for the period analyzed, the deceleration has been
small (from 176m/s to 152m/s, see fig. 7.57). The close match between
numerical and experimental impulse histories (fig. 7.56) suggests that
a similarly small deceleration would have happenned in experiment. As
the inertia force, Pj  depends on the velocity (eqn. 7.8), it may be
presumed that experimental and numerical crushing forces will be
similar within an error of approximately 10%.

This "medium" velocity crushing force is considerably larger than
that obtained from static tests performed on identical tubes (Hurley,
1983), which yielded a value of

pStat = g1 kN

This static value is consistent with the generally good quasi-static
load predictions from egn. (7.2) (Alexander, 1960). Considering an
average value of Y = 476 MPa, which corresponds to 0.8 strain,

Pé‘ex = 71 KN

0f this difference (150.3kN medium velocity, 61kN quasi-static),
the strain-rate material hardening accounts only for a minor part. The
strain-rate enhancement may be approximated as follows.

- time for the formation of one complete fold (two hinges):
t = (h-2t))/v = (27.2-3.2)10“3m/(170m/s) = 1.41x107% (sec.)
- average strain-rate:

A€= 2x0.8 = 1,6

e= A€ - 1.1x10% (sec-1)

At

- strain-rate enhancement factor:

1+ M8 = 1+(1.1x10%)9-2/40.4 = 1.16,
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which corresponds to an increase of only 16%.

Even allowing for errors in these simplified considerations, the
difference between quasi-stastic and medium velocity crushing loads is
too large (approx. 100%) to be explained by strain-rate material
hardening alone. This result is extremely interesting and suggests an
inherently substantially greater energy dissipation for medium
velocity tube crumpling, even for rate-insensitive materials. It is
all the more notable since externally no apparent differences are
appreciated between the crumpled geometries for lTow and medium
velocity impact.

An explanation for this may be found in the pronounced non-
linearity of the process. A final geometry which is substantially
the same may be arrived at by distinct paths, associated with
different amounts of dissipated energy.

7.5 CONCLUSIONS

1-  Tubes subjected to axial collapse are efficient energy absorbers
for impact situations. Experimental knowledge from the bahaviour of
Aluminium tubes under quasi-static axial collapse was obtained from
tests carried out mainly by Ghani (1982). Microhardness tests in
sections of the crumpled tubes allowed the determination of yield
stress (Y) distributions around the folds. These distributions were
useful as a check of the numerical predictions.

2- The numerical modelling of quasi-static, axisymmetric axial
collapse of tubes was approached with the non-linear explicit Finite
Difference code (chapter 4). The numerical predictions (load-
displacement curves, deformed geometries, stress distributions)
compared well with experiment. The numerical code used constitutes a
robust solution method for modelling what is a highly complex non-
linear process, with very large strains and arbitrary tube-tube and
tube-platen contacts. The simple, sound material model employed, based
on Von Mises isotropic plasticity (chapter 6), also performed
excellently.
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3- An explicit (dynamic) solution method was applied successfully
for modelling the quasi-static collapse, using velocity scaling in a

controlled manner.

4- The numerical model proved sensitive to mesh refinement,
specially in short tubes with few folds in the crumpling mechanism,
for which end effects are important. An overall tendency for overstiff
predictions (fold lengths too large) was detected. Convergence towards
experimentally observed behaviour was achieved with mesh refinement.

5- The choice of appropriate elements for the numerical model was
essential for successful predictions. CST elements (section 4.2.1) are
totally unsuitable. CMTQ elements (section 4.2.3) provided the best
results and the most robust meshes.

6- A medium velocity (176m/s) impact of a long tubular projectile,
ocassioning large-scale crumpling, was modelled successfully, albeit
at a high cost in computer resources. Results compare well with
experiment, and indicate substantially greater levels of energy
dissipation in the crumpling process than for quasi-static collapse.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

8.1 CONCLUSIONS

8.2 SUGGESTIONS FOR FURTHER RESEARCH

8.2.1 Theoretical and numerical developments
8.2.2 Additional applications



8.1 CONCLUSIONS

1. Explicit Finite Difference techniques, as used in this work, are
advantageous for non-linear, short duration transient analysis (wave
propagation type). They can be also useful in slow loading but steeply
non-linear problems, in order to take advantage of their robustness
and ease of implementation. In general, theoretical solid mechanics
concepts and equations can be implemented straightforwardly. Many of
the more rigorous stress update procedures necessary for implicit
methods need not be used, as time-steps are restricted to very small
values for stability. A Lagrangian mesh together with a Cauchy stress
- velocity strain formulation are appropriate for low - medium
velocity, large strain elastic-plastic problems with contacts.

2. Meshes based on constant strain triangles or tetrahedra (CST)
provide unacceptable results for incompressible plastic flow. Mixed
Discretization procedures based on averaging the volumetric strains
from several triangles/tetrahedra (Marti and Cundall, 1982) provide
accurate predictions and are easily implemented into computer codes;
however, tangling over of the mesh can occur in problems with very
large distortions. A correction method is proposed here (section
4,2.3) for Mixed Discretization procedures, which maintains their
ability for accurate plastic flow modelling, recovering the resistance
to tangling over of CST meshes. Hence, a more robust and equally
accurate alternative to Mixed Discretization is obtained.

3. Tension tests are a simple and reliable means for obtaining large
strain material stress-strain behaviour (chapter 6). Experimental
data, together with some theoretical interpretation and results of
numerical simulation tests, allowed a representative constitutive law
for Aluminium to be established. A simple Von Mises plasticity model
with power law hardening was employed. Results for more complex tube
crumpling simulations showed the appropriateness of this material
model.

4, Numerical modelling of tube collapse mechanisms through
axisymmetric sequential crumpling was successfully achieved (chapter
7) with the Explicit Finite Difference code developed (chapter 4). The
contact algorihtms employed were successful and efficient in modelling
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the interface between tube folds and between tube and platens. The
resulting load-displacement curves and deformed geometries compare
well with experimental data for quasi-static tube collapse. Stress
distributions in crumpled tube sections were compared with
experimental data derived from microhardness tests, with good resuits.
The influence of some important aspects of the numerical model was

ascertained:

- the model behaviour is overstiff (folds too long) if the mesh is not

sufficiently refined;

- the choice of appropriate element types (CMTQ, sect. 4.2.3) was
essential for efficient and successful modelling;

- The velocity scaling used (within the low velocity regime) allowed
modelling of a quasi-static phenomenon with an explicit, dynamic
procedure;

- end effects (deformation and folding at tube edges) may have a
significant influence in some cases, being difficult to represent
appropriately within a larger, global model.

5. Analysis of a steel tube medium velocity (176 m/s) impact (sect.
7.4) provided results which compare well with experimental data. The
deformed geometry was similar to the low velocity case, but the
crushing force was found to be significantly higher.

6. Computational costs for tube collapse simulations are high,
although affordable for specialized safety or impact calculations.

8.2 SUGGESTIONS FOR FURTHER RESEARCH

A number of options are available for researchers interested in
the topics dwelt upon in this thesis. Theoretical work along some of
the lines suggested below would enhance the applicability of numerical
simulation procedures to non-linear processes. Other suggestions
involve the use of similar numerical methods as proposed here,
widening the field of applications to other non-linear problems.
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8.2.1 THEORETICAL AND NUMERICAL DEVELOPMENTS

- The choice of an objective stress rate for Targe strain analysis
is not unique (section 2.5.1). Generally, the use of a particular
stress rate is postulated and applied to the existing material data.
[t would be useful to study the influence of the different choices
available, both in theoretical terms and for the practical

implications in large strain engineering analyses.

- The material models employed here are restricted to simple Von
Mises plastic materials with hardening. This could be extended to more
sophisticated material models (sect. 2.2.7) appropriate for metals
(distortion of yield surface, yield and failure surfaces), soils
(dilatation, non-associativity, non-cylindrical yﬁe]d surfaces,
multiple surface idealizations) or concrete (cracking and failure

criteria, non-cylindrical yield surfaces).

- More rigorous alternatives exist to the simple plastic radial
return and stress update algorithms employed here (sections 4.5.2,
4.5.4). 1t would be useful to study the applicability and practical
influence of these alternatives within explicit and implicit codes.

- Element by Element methods (Hughes, Levit and Winget (1983b),
Ortiz, Pinsky and Taylor (1983)) are promising new alternatives for
non-linear transient analysis. The main problem seems to be accuracy,
and published applications are restricted to small academic examples.
Such algorithms can be implemented without much effort into the
architecture of an explicit code, in order to study their behaviour in

practical terms for large scale engineering computations.

- For penalty method contact models, further research would be
useful in order to increase the robustness and efficiency of the
algorithms. This could include adaptative methods for determining
contact stiffnesses, and improved search algorithms for automatic

detection of contacts.
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- Explicit time fntegration procedures could be used much more
efficiently for static or quasi-static problems through the use of
adaptative dynamic relaxation techniques (Underwood, 1983). In fact,
relaxation techniques are also being proposed lately for use in
equation-solving within implicit methods (e.g. Belytschko, 1983). It
is possible that a relaxation algorithm could be found that was
appropriate both for implicit equation-solving and for explicit
dynamic relaxation. This would make possible the highly desirable
combination of efficient explicit and implicit solution techniques
within the same algorithm and computer code.

8.2.2 ADDITIONAL APPLICATIONS

- The thermomechanical coupling algorithm developed can be readily
applied to study coupled phenomena, such as metal forming processes
with generation of heat from plastic work and the consequent thermal
stresses and material softening.

- Further use can be made of tension tests, coupled with numerical
simulations, for more detailed investigations into material behaviour
and failure modes in metals, and effects such as the influence of
pores and mechanisms for void growth.

- The numerical techniques employed here could also be used for the
study of lateral compression of tubes or tube assemblies (sect.
- 7.2.3.1), tube inversion (sect. 7.2.3.4), or diamond fold collapse (3-
D model) (sect. 7.2.3.3).

- The crushing force for medium velocity impact (sect. 7.4) was
significantly higher than that expected for low velocity or quasi-
static collapse, both from theoretical and experimental results. It
would be véry interesting to study, experimentally and numerically,
the influence of impact velocity on crushing mechanisms, both for
rate-insensitive and rate-dependent materials.
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