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ABSTRACT 

Numerical methods are proposed f o r the ana lys is of 2 or 3-

dimensional la rge s t r a i n p l a s t i c i t y problems. A F i n i t e D i f f e rence 

program, w i t h 2-d imensional cont inuum elements and e x p l i c i t t ime 

in tegra t ion , has been developed and applied to model the axisymmetric 

crumpling of c i r cu la r tubes. 

New types of mi xed el ements (Tr iangles-Quadr i la tera ls for 2-D, 

T e t r a h e d r a - B r i c k s f o r 3-D) are p roposed f o r t he s p a t i a l 

d i sc re t i za t i on . These elements model accurately incompressible p las t ic 

f low, without unwanted "zero-energy" de fo rmat ion modes or t a n g l i n g 

over of the mesh. E l a s t i c - p l a s t i c , ra te dependent laws are modelled 

wi th a "radial return" algor i thm. The transmission of heat generated 

by p l a s t i c work and mate r ia l dependence on temperature are a lso 

included, enabling a f u l l y coupled thermo-mechanical analysis. 

A 2-D and ax isymmetr ic computer program has been developed, 

implement ing the numerical techniques descr ibed . Computat ional 

e f f i c i e n c y was e s s e n t i a l , as la rge sca le , c o s t l y a p p l i c a t i o n s were 

intended. An important part of the program was the contact a lgor i thm, 

enabling the modelling of in terac t ion between surfaces. 

The ax isymmetr ic c rump l ing of tubes under a x i a l compression 

( "concer t ina" mode) has been analyzed Numer i ca l l y . Q u a s i - s t a t i c 

experiments on Aluminium tubes were modelled, using ve loc i ty scal ing. 

Mery large s t r a i n s are developed in the c rump l ing process; w i t h the 

help of tension tes ts , material laws va l id for such s t ra in ranges were 

developed. Good agreement was obtained between numerical predict ions 

and experimental resul ts . Modelling choices such as mesh refinement, 

element type and veloc i ty scal ing were studied, and found to have an 

impor tan t i n f l u e n c e on the numerical p r e d i c t i o n s . F i n a l l y , a l a rge 

scale impact ana lys i s of a s tee l tube at 176m/s was per formed. The 

resul ts compared wel l w i th experiment, ind ica t ing dif ferences w i th the 

behaviour of low ve loc i ty crumpling mechanisms. 

To conclude, F i n i t e D i f f e rence procedures w i t h e x p i i c i t t i m e -
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marching techniques are proposed for large s t ra in p l a s t i c i t y problems, 

at low or medium impact v e l o c i t i e s . A f a i r l y robust code has been 

developed and applied successful ly to a range of large s t ra in and tube 

crumpling problems. 
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BASIC NOTATION 

A Area; Mass damping coe f f i c ien t (eqn. 4.56) 

B S t i f f n e s s damping c o e f f i c i e n t (eqn. 4.56); s t r a i n - r a t e 

parameter (eqn. 4.50) 

B (B.j-) Left Cauchy-Green deformation tensor (eqn. 2.12) 

B.:j Gradient operator for F in i te Elements (eqn. 3.6) 

c Stress wave ve loc i ty 

C (Cj-jki) Const i tut ive tensor for Jaumann rate of Cauchy stress (eqn. 

3.23) 

C (CJJ ) Right Cauchy-Green tensor (eqn. 2.12) 

C Damping matrix (eqn. 3.30) 

(̂  (Cj-jki ) C o n s t i t u t i v e tensor f o r Truesde l l ra te of Cauchy s t ress 

(sect . 3.5.2) 

CST Constant s t ra in elements 

d (d.j-j) Rate of deformation tensor (eqn. 2.15) 

d (d.j ) Penetration in contact (eqn. 4.68) 

D (DJJKL) Const i tut ive tensor ( to ta l Lagrangian) (eqns. 2.47, 3.21) 

D Diameter 

E Young's modulus of E las t i c i t y 

E (E j j ) Green's s t ra in tensor (eqn. 2.17) 

F Force; Yield funct ion (eqn. 2.54) 

F (F j ) Deformation gradient tensor (eqn. 2.7) 

FD F in i te Difference (method) 

FE F i n i t e Element (method) 

G E l a s t i c shear modulus (eqn. 2.45) 

g (g-j-j) Met r i c tensor (eqn. 2.2) 

h , h a , h Y , h ' H e i g h t ; P l a s t i c hardening moduli (eqns. 4 .44 , 4.45) 

h ( h i ) Heat f low ra te (eqn. 2.32) 

Ident i ty tensor 

Inner diameter 

Jacobian of motion (eqn. 2.10) 

S t i f fness , s t i f fness matrix (eqns. 3.10, 3.11) 

Length 

Velocity gradients (eqn. 2.14) 

Mass, mass matrices (eqn. 3.8) 

Mixed Discret izat ion (sect. 4.2.2) 

MTB(C) Mixed Tetrahedra-Brick (Corrected) elements 

I 

ID 

J 

K,K 

L 

1 Oi 
m , M , m 

MD 

j> 
i,M 
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MTQ(C) 

N, 

n 

N 

OC 

P 

q 

r, 

R 

s, 
s 
s 

t 

T 

u 

u 

U 

n 

i 

R 

( R i j ) 

s 

( S I J ) 
( s i d ) 

(U- j ) 

( U I J ) 

Mixed Tr iangles-Quadri lateral (Corrected) elements 

Normal vectors 

Time instant corresponding to n t 

Shape functions for FE (eqn. 3.5) 

Outer Diameter 

Internal forces 

Body heat supply 

Radius; External force (eqn. 3.8) 

Rotation tensor (eqn. 2.11) 

Surface; Distance along a curve 

2nd Piola-Kirchhoff stress tensor (eqn. 2.25) 

Cauchy deviator ic stresses (eqn. 2.59) 

Time; Thickness 

Temperature 

Internal energy 

Displacements 

Right stretch tensor (eqn. 2.11) 

V Volume 

V (Vi-j) Left stretch tensor (eqn. 2.11) 

v,v (v.j ) Velocity (eqn. 2.6) 

w (w-j ̂ ) Spin tensor (eqn. 2.15) 

W Work, Energy 

x (xn- ), 

(x,y,z) Spatial coordinates (eqn. 2.5) 

X Particle (sect. 2.2.1) 

X (Xj) Lagrangian coordinates (eqn. 2.4) 

X Vector product (eqn. 2.30) 

V Yield stress 

a Thermal expansion c o e f f i c i e n t ; Back s t ress (eqn. 2.61); 

Mixed Discret izat ion correct ion coe f f i c ien t (eqn. 4.19) 

(3 P ropor t ion of c r i t i c a l damping; Radial return coe f f i c ien t 

(eqn. 4.32) 

T Plast ic flow a rb i t ra ry mu l t i p l i e r (eqn. 2.55) 

A Increment 

5-j -; Kronecker delta 

eP Ef fect ive p last ic s t ra in (eqn. 2.60b) 

e(e-j-j) Small s t ra in tensor (eqn. 2.43) 

X Lame's Elast ic constant 

\i Coeff ic ient of Coulomb f r i c t i o n (eqn. 7.11) 
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v 
P 
9 

a (cr i : j) 

d 

x 
0) 

Poisson's ra t i o 

Mass densi ty; Radius of curvature 

Angular coordinate 

Cauchy stress tensor (eqn. 2.24) 

Par t ia l der ivat ive 

Pul l-back, push-forward of tensors (eqns. 2 .21, 2.22^ 

Mesh coordinates (sect. 3.4) 

Angular frequency 
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CHAPTER 1 

INTRODUCTION 

1.1 OBJECTIVES 

1.2 NON-LINEAR MODELLING 

1.3 LAYOUT 
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1.1 OBJECTIVES 

This work cons i s t s of a t h e o r e t i c a l par t (mathematical and 

numerical models, chapters 2-4) , and a p r a c t i c a l par t ( a p p l i c a t i o n s 

and numerical s i m u l a t i o n of la rge s t r a i n tube co l l apse a n a l y s i s , 

chapters 5-7). 

The motivation for the theoret ica l part of the work l i es in the 

author's in teres t in non-l inear so l id mechanics modell ing, understood 

broadly as encompassing the fo l lowing phenomena: 

- large stra ins and large displacements (geometric non l i nea r i t i e s ) ; 

- p las t ic and v iscoplast ic behaviour (material non l inear i t i es ) ; 

- contacts and impact (nonlinear boundary cond i t ions) ; 

- thermomechanical coupl ing. 

On the pract ica l s ide, the source of motivation was the research 

program on tube co l l apse mechanisms being c a r r i e d out at the C i v i l 

Engineer ing department of King's Co l lege , U n i v e r s i t y of London 

(Andrews, England and Ghani, 1983). Such mechanisms are e f f i c i e n t 

energy d iss ipat ing systems (Johnson and Reid, 1978), for use in impact 

s i tuat ions. Add i t iona l l y , tubesare frequent s t ruc tura l components for 

aerospace vehicles and other equipment or components which may suffer 

accidental c o l l i s i o n s . 

The o b j e c t i v e of t h i s work was the development of numerical 

methods of s i m u l a t i o n f o r non l inear a n a l y s i s , capable of mode l l i ng 

tube co l l apse mechanisms. More s p e c i f i c a l l y , the a t t e n t i o n was 

r e s t r i c t e d to co l lapse through axi symmetr ic sequent ia l f o l d i n g 

(Concertina mode). Numerical predict ions for tube collapse should be 

obtained and compared to experimental resu l ts , avai lable from previous 

work on a luminium tubes by Ghani (1982). This o b j e c t i v e posed some 

important challenges, such as the development of a numerical model for 

large stra ins and large displacements, wi th e l as t i c -p l as t i c behaviour, 

capable of mode l l i ng a r b i t r a r y tube- tube and t ube -p l a t en contac ts 

(chapters 2, 3, 4). Re l i ab le data would have to be obta ined f o r the 
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TIME = 0.00 ms 

TIME = 1.37 ms 

TIME = 0.77 ms 

TIME = 2.09 ms 

3= 

TIME = 2.93 ms TIME = 3.62 ms 

igur 1, TYPICAL RESULTS FOR AXISYMMETRIC TUBE COLLAPSE ANALYSIS 
0D = 38..1mm.t.= 1.22mm.L=88.9mm - TUBE9, GEOMETRY F (SEE TABLE 7.4) 
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c o n s t i t u t i v e behaviour of the Aluminium at l a rge s t r a i n s (chapter 6). 

W i t h t h i s o b j e c t i v e i n m i n d , a F i n i t e D i f f e r e n c e method w i t h 

e x p l i c i t t ime i n t e g r a t i o n was chosen. The method uses a F i n i t e Element 

t o p o l o g y , and can t h e r e f o r e be a p p l i e d t o i r r e g u l a r meshes i n 

a r b i t r a r y con t inua . An e f f i c i e n t con tac t l o g i c was essen t i a l f o r the 

success of the s i m u l a t i o n s . A t y p i c a l example of the r e s u l t s obta ined 

i s shown i n f i gu re 1 .1. 

1.2 NON-LINEAR MODELLING 

W i t h i n t h e pas t decade t h e r e has been c o n s i d e r a b l e i n t e r e s t i n 

n o n l i n e a r s o l i d mechan ics s i m u l a t i o n s , due t o t h e g r e a t p r o b l e m -

so l v i ng power a v a i l a b l e f rom the new generat ions of d i g i t a l computers. 

The p o s s i b i l i t y of d e t a i l e d s o l u t i o n s f o r h i g h l y complex n o n - l i n e a r 

problems has occassioned renewed i n t e r e s t and pressure f o r power fu l 

mathemat ical d e s c r i p t i o n s and n u m e r i c a l t e c h n i q u e s w h i c h i m p l e m e n t 

them e f f i c i e n t l y . 

In many aspects of n o n - l i n e a r numer ical m o d e l l i n g , choices are 

a v a i l a b l e : e x p l i c i t or i m p l i c i t t i m e i n t e g r a t i o n , L a g r a n g i a n or 

Eu le r ian meshes, t o t a l Lagrangian or Cauchy s t ress f o r m u l a t i o n s . Each 

of t h e s e c h o i c e s has i t s own advantages and d r a w b a c k s . On t h e o t h e r 

hand, n o n - l i n e a r mechanics i s a f i e l d under constant development, and 

new approaches are being exp lored which a t tempt t o combine e f f i c i e n t l y 

t he advantages o f d i f f e r e n t t e c h n i q u e s (e .g . E lement By E lement 

method, A r b i t r a r y Lagrangian Eu le r ian d e s c r i p t i o n s ) . 

The procedure chosen f o r t h i s work ( E x p l i c i t F i n i t e D i f f e rence ) 

i s i d e a l l y s u i t e d f o r s t e e p l y n o n - l i n e a r , s h o r t d u r a t i o n t r a n s i e n t 

phenomena (wave propagat ion type problems). A na tu ra l a p p l i c a t i o n is 

f o r i m p a c t s c e n a r i o s , e.g. t h e m i s s i l e i m p a c t t e s t s done a t UKAEA 

W i n f r i t h r e p o r t e d by Barr (1983a) ( s e c t . 7 .4) . E x p l i c i t F i n i t e 

D i f f e rence techniques are a lso usefu l f o r slow load ing phenomena, in 

order t o take advantage of the n o n - l i n e a r robustness and c a p a b i l i t i e s , 

through the use of v e l o c i t y s c a l i n g or dynamic r e l a x a t i o n (chapters 4, 

6, 7) . 
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1.3 LAYOUT 

In chapter 2 a number of essential so l id mechanics concepts are 

in t roduced and discussed b r i e f l y . Non- l inear numerical models and 

techniques to implement those concepts i n t o numerical codes are 

reviewed in chapter 3. The E x p l i c i t F i n i t e D i f f e rence model and 

computer code developed here are described in chapter 4, whi le chapter 

5 contains some va l ida t ion examples which test the main aspects of the 

f o r m u l a t i o n . Chapter 6 concerns the d e r i v a t i o n of a ma te r ia l 

cons t i tu t i ve law for Aluminium al loy through tens i le tes ts , wi th some 

a p p l i c a t i o n s to the numerical s i m u l a t i o n of the t e n s i l e t e s t s 

themselves. Chapter 7 contains appl icat ions to tube collapse analysis, 

comparing the results wi th experimental data for quas i -s ta t ic collapse 

of Aluminium tubes. The c o n s t i t u t i v e law from chapter 6 i s used f o r 

the numerical predict ions. An analysis for a medium veloc i ty (176 m/s) 

tube impact is a lso descr ibed. F i n a l l y , conc lus ions and some 

suggestions for fur ther work are given in chapter 8. 
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2.2 KINEMATICS 

2.2.1 Configurations 

2.2.2 Deformation tensors 

2.2.3 Deformation and spin rates 

2.2.4 Strains 

2.2.5 Transformations 

2.3 STRESS 

2.3.1 Cauchy 
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2.4 BALANCE LAWS 
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19 

2.1 INTRODUCTION 

The advances made in d i g i t a l computing w i th in the last decades 

have opened up new f i e l d s f o r engineers and s c i e n t i s t s . Problems 

previously regarded as unsolvable, only approached through experiments 

and s imp l i f i ed empir ical formulae, can now be analyzed numerically in 

great d e t a i l . In the f i e l d of cont inuum mechanics t h i s has g r e a t l y 

increased the in teres t in detai led mathematical descr ipt ions, amenable 

to be used in numer ical models w i t h d i s c r e t i z a t i o n techniques (e.g. 

F in i te Element or F in i te Difference methods). 

Having said t h i s , there s t i l l e x i s t s a c e r t a i n degree of 

c o n f u s i o n i n t he s p e c i a l i s t l i t e r a t u r e . On t h e p a r t of t h e 

mathematicians, rigorous mechanical descript ions are often presented 

in ways d i f f i c u l t to be grasped by engineers and implemented in 

numerical production codes. As a resu l t , many engineers s t i l l c l ing on 

to outdated and much less powerfu l n o t a t i o n s . On the other hand, 

t h e o r e t i c a l p resen ta t ions are not un ique, causing some degree of 

confusion to researchers f i r s t approaching ser iously these topics. 

An e f f o r t has been made in t h i s chapter to present a b r i e f 

overview of cer ta in continuum mechanics concepts, indispensable in a 

rigorous treatment, without unnecessary mathematical fuss. The purpose 

of th is exposit ion i s : 

- to in t roduce the nomenclature and d e f i n i t i o n s of concepts used in 

la ter chapters; 

- to discuss the s i g n i f i c a n c e of and i n t e r p r e t some concepts w i t h a 

view to numerical modelling (basis of th i s work); 

- to ensure c e r t a i n completeness f o r the ideas presented in t h i s 

thes is . 

I t must be s t ressed , however, t ha t t h i s expos i t i on does not 

pretend to be complete. Only the concepts which are relevant for the 

rest of t h i s t hes i s w i l l be dwel t upon. In p a r t i c u l a r , emphasis is 

l a i d on s o l i d mechanics and el a s t i c - p i a s t i c behaviour. A number of 

r e s u l t s w i l l be presented w i t hou t proof . For a more complete 
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discussion of these top ics , the interested reader is referred to Fung 

(1965), Malvern (1969), and B i l l i ng ton and Tate (1981) for the general 

concepts, and t o Marsden and Hughes (1983) f o r a more d e t a i l e d 

and up-to-date mathematical descr ip t ion . 

In the fo l low ing presentat ion, the ambient space is assumed to be 

an Eucl idean po in t space ( i . e . i n t e r i o r product de f i ned ) , and where 

necessary th i s w i l l be par t i cu la r ized to R3. The coordinate bases may 

be c u r v i l i n e a r and a r b i t r a r y , a l though when equat ions are given in 

component form, often orthonormal bases (not necessar i l y c a r t e s i a n ) 

are assumed for s imp l i c i t y . The usual conventions for tensor notation 

are employed: repeated ind ices i n d i c a t e summation over t h e i r range 

unless e x p l i c i t l y stated, and commas indicate covariant der ivat ives. 

Vectors and tensors are represented by boldface characters. Superposed 

dots indicate material t ime der ivat ives. 

Given two tensors A and B the product AB i s understood to be 

contract ing the near indices with opposite variance: 

(AB) i j = A i k B k
j (2.1) 

I f the ind ices have the same va r iance , e.g. both are c o n t r a v a r i an t , 

the metric tensor g is necessary to lower one: 

(AB)1J - A l k g k l B
1 j = A l k 8 k

j (2.2) 

When the tensor components are r e f e r r e d to orthonormal bases the 

ver t ica l posi t ion of the indices is i r re levan t , as the metric tensor 

is un i ty . 

A colon indicates doubly contracted product: 

A:B = A ^ B ^ (2.3) 

2.2 KINEMATICS 

A body (or cont inuum) is a set whose e lements, c a l l e d ma te r i a l 

p a r t i c l e s , have a one-to-one correspondence w i t h a region V of the 
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Euclidean point space. The following kinematics concepts are intended 

to provide a description of the motion of deformable bodies. 

2.2.1 CONFIGURATIONS 

Each particle X of the body B may be identified by its position X 

in the original configuration, V0, which is taken as reference: 

X = k(X) (2.4) 

X (components Xi) are cal led Material or lagrangian coordinates of the 

pa r t i c l e . The motion of the body at a la te r t ime is given by the t ime-

dependentpositions x of the par t ic les in the current conf igura t ion , 

V: 

x = x ( X , t ) ( 2 . 5 ) 

x (components x i ) are the spat ia l or Eulerian coordinates. Hereafter 

upper case ind ices sha l l r e f e r to Lagrangian coo rd i na tes , and lower 

case to Euler ian. The ve loc i t ies are defined as 

:2.6' 

where the dot s ign i f i es a material time der iva t i ve , i.e. fo l lowing the 

par t i c le X. 

2.2.2 DEFORMATION TENSORS 

Central to deformation measurements is the deformation gradient 

tensor: 

F = dx/dX (2.7) 

with components Fn j = x1 j . 

The tensor F is used as the base f o r a number of s t r a i n and 

deformat ion measures. An element of a curve dX i s t rans formed by 
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dx = FdX. The inverse of F gives the spatial gradients of the material 

coordi nates: 

F"1 = dX/dx 

(2.9) 

( (F" 1) 1! = X!
si ) 

F const i tutes a two-point tensor. Another in te rp re ta t ion that relates 

F to transformations between conf igurat ions is given in section 2.2.5. 

The Jacobian of the motion is 

J = det(F) (2.10) 

The polar decomposition of F gives 

F = RU = VR (2.11) 

where R is an or thogonal ( r o t a t i o n ) tensor , RRT = I . U and V are 

posi t ive d e f i n i t e , and are cal led the r ight and l e f t stretch tensors 

r e s p e c t i v e l y . Equations (2.11) represent two ways to v i s u a l i z e the 

de fo rma t ion : f i r s t s t r e t c h i n g (U) and then r o t a t i n g (R), or f i r s t 

ro ta t ing (R) and then st retching (V) 

Other deformation measures are the Cauchy-Green tensors: 

C = F'F ( r igh t Cauchy-Green) 

(2.12) 

B = FF1 ( l e f t Cauchy-Green) 

The length of an element of curve i s given by ds2 = dxdx in the 

current conf igurat ion, and dS2 = dXdX in the or ig ina l conf igurat ion. 

The signi f icance of C and B is given by the re lat ions 

ds2 = dXCdX 

(2.13) 

dS2 = dxB-ldx 
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2.2.3 DEFORMATION AND SPIN RATES 

The spatial velocity gradient tensor is defined as: 

1 = dv/dx (2.14) 

which can be decomposed in to symmetric and skew-symmetric par ts : 

d = ( l + lT ) / 2 

(2.15) 

w = ( l - l T ) / 2 

These are cal led the rate of deformation (or ve loc i ty s t ra in ) and spin 

rate tensors respect ively. The rate of change of length of an element 

of curve is given by 

ds = (dxddx)/ds (2.16) 

2.2.4 STRAINS 

A measure of the t o t a l s t r a i n is given by the Green s t r a i n 

tensor, defined as 

E = (C - I ) / 2 (2.17) 

where I is the Ident i ty tensor. I t is t r i v i a l to see that 

ds2-dS2 = 2dXEdX (2.18) 

and that the rate of E is given by 

E = FTdF (2.19) 
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2.2.5 TRANSFORMATIONS 

For the tensors de f ined above, some of the ind ices r e f e r to the 

or ig inal conf igurat ion (upper case), whi le others are related to the 

current conf igurat ion (lower case). Here some transformation laws are 

g iven t o f i n d the c o r r e s p o n d i n g t e n s o r i n t he a l t e r n a t i v e 

confi gurat ion. 

Although the transformed tensors w i l l be considered as d i f fe ren t 

t e n s o r i a l e n t i t i e s , one way to v i s u a l i z e the t r a n s f o r m a t i o n is as a 

mere change of base. Imagine a base ( O . e ^ f i x e d in space throughout 

the mot ion , and another base ( 0 ' ( t ),e ' i U ) ) wh i ch de forms and 

t r a n s l a t e s w i t h the body. In t h i s convected c u r v i l i n e a r base, the 

coordinates of a material point remain constant throughout the motion, 

and equal to the material coordinates, XI. The spat ia l components of F 

prov ide the ma t r i x f o r the change of coord ina tes between the two 

bases. Given a 2nd order c o n t r a v a r i a n t tensor a by i t s convected 

material components, a_U, the spat ial components are 

a i j = O x V d x M O x J / a x ^ a U ( 2 .20) 

Hence F provides a means for transforming between spat ial and material 

coordinates, a"iJ and a_U are the components in d i f fe ren t bases of the 

same tensor , a. I f now one assumes components a_U to apply to the 

spatial basis, a new tensor is obtained: 

A = a_IJ ejBej (2.21a) 

where s s ign i f ies a tensor ia l product. A is ca l led the pull-back of a, 

and may be obtained as 

A = F_1aF"T = (d£(a) (2.21b) 

while the push-forward is defined by the inverse r e l a t i o n : 

a = 0 t*(A) = FAFT (2.22) 

These relat ions may be t r i v i a l l y generalized to tensors of any rank. 
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Elements of area and volume i n r e f e r e n c e and c u r r e n t 

configurat ions are transformed by the fo l lowing transport formulae: 

nda = JF"TNdA (2.23a) 

dv - JdV (2.23b) 

These r e l a t i o n s may be used to express i n t e g r a l balance laws (sect . 

2.4) i n e i t h e r c o n f i g u r a t i o n . Eqn. (2.23a) cond i t i ons the form of the 

Piola transformations for the stress tensor (eqn. 2.25) 

2.3 STRESS 

2.3.1 CAUCHY 

The concept of s t ress res ts upon the Cauchy pos tu la te t ha t the 

action of the rest of the material upon any volume element of i t is of 

the same form as d i s t r i b u t e d sur face f o r ces . A t r a c t i o n vector t ( n ) 

may be d e f i n e d at each p o i n t , as t h e f o r c e e x e r t e d per u n i t 

i n f i n i t es ima l area, for each or ienta t ion n. 

Apply ing e q u i l i b r i u m c o n s i d e r a t i o n s , i t may be deduced t ha t a 

stress tensor a must ex i s t , such that for every or ientat ion n 

t ( n ) = n a (2.24) 

a i s cal led the Cauchy or true stress tensor, and i t is related 

to the current conf igura t ion . 

2.3.2 PIOLA-KIRCHHOFF 

I f both the fo rce and the area components of the concept of 

s t ress are t rans formed back i n t o the o r i g i n a l c o n f i g u r a t i o n , a new 

stress tensor is obtained: 

S = JF-1(7 F_ t = J0 t * ( c r ) (2.25) 
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This re la t ion is cal led the backward Piola t ransformat ion. I t defines 

the 2nd P i o l a - K i r c h h o f f s t ress tensor S, which is a s t ress measure 

referred to the or ig ina l conf igurat ion. 

2 . 4 BALANCE LAWS 

Balance laws (mass, momentum, angular momentum, and energy) may 

be s ta ted a l t e r n a t i v e l y in i n t e g r a l form or as f i e l d equat ions. 

Integral forms provide "weaker" expressions for the same pr inc ip les . 

This w i l l be commented fur ther in section 4.3. 

2 . 4 . 1 BALANCE OF MASS 

Conservat ion of mass imp l i es t h a t the mass of the ma te r i a l 

ocupying a c e r t a i n region V of the body remains constant throughout 

the motion: 

(d/dt)fpdV = 0 (2.26) 

where p is the mass density. 

As a field equation, balance of mass is expressed by the 

continuity equation: 

p + pdiv(v) = 0 (2.27) 

2 . 4 . 2 BALANCE OF MOMENTUM 

For a region V of the body wi th boundary S, the integral form of 

the equation of l inear momentum balance is 

(d /d t ) f pvdV = I pfdV + f nadS (2.28) 

V V S 

where f i s t he body f o r c e per u n i t mass. The c o r r e s p o n d i n g 
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d i f f e ren t i a l expression is Cauchy's equation of motion, 

pv = div( a) + p f (2.29) 

The i n t e g r a l s in eqn. (2.28) i nvo l ve vec to r s , and as po in ted out 

by Marsden and Hughes (1978), may not provide a covariant statement of 

the momentum balance p r inc ip le in a general manifold. However, for the 

Euclidean space to which th i s exposit ion re fers , the object ion is not 

re levan t . The i n t e g r a l expression i s b e t t e r su i t ed f o r f i n i t e 

di f ference numerical models (section 4.3), for which weak var ia t iona l 

global expressions (as employed in F in i te Elements) are not obtained. 

Taking moments in eqn. (2.28) w i t h respect to the o r i g i n , the 

balance of angular momentum is expressed by 

(d/dt) /p(xXv)dV = fp(xXf)dV + /xX(nc7)dS (2.30) 

where xXv denotes vector product of x and v. The corresponding field 
equation states simply the symmetry of O": 

U= GJ (2.31) 

Symmetry of S may be deduced from eqns. (2.25) and (2.31). 

2.4.3 BALANCE OF ENERGY 

In a continuum, the first law of thermodynamics may be expressed 

as 

(d/dt) JpudV = / ( pq+a:d)dV + fhndS (2.32; 

V 

where u is the internal energy per unit mass 

q is the rate of body heat supply per unit mass 

h is the heat flux vector; for an oriented infinitesimal area 

the heat flow rate is given by H = hndS 

The corresponding field equation is 
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p u = aid + p q + d iv(h) (2.33) 

The term aid represents the s t ress work per u n i t volume and 

t ime, a and d are said to be conjugate stress and s t ra in measures. An 

a l te rnat ive representation of the energy balance p r i n c i p l e i nvo lves 

the use of S and E, also conjugate: 

p0u = S:E + p0q + &- d iv (h ) (2.34) 

2.5 CONSTITUTIVE RELATIONS 

The balance laws prov ide a set of equat ions which are not 

su f f i c ien t to determine the behaviour of a material body. Some fur ther 

equations are necessary, s t a t i n g the re la t ion between kinematic and 

dynamic variables (const i tu t ive equations). 

Const i tut ive equations are based on judgement, a -p r io r i knowledge 

of how the material behaves. However, cer ta in general pr inc ip les must 

be sa t i s f i ed in t he i r formulat ion. For our purpose, the most important 

p r i n c i p l e i s t h a t of o b j e c t i v i t y , which s ta tes t ha t c o n s t i t u t i v e 

equations must be invar iant under changes of reference frame, in order 

to represent the material behaviour ob jec t i ve ly . 

For a homogeneous material i t may be seen (B i l l i ng ton and Tate, 

1981), t h a t an o b j e c t i v e r e l a t i o n between Cauchy s t r e s s and 

deformation takes the form: 

a = R p ( C t ( s ) , T t ( s ) ) RT (2.35) 

where R is the rotat ion tensor (eqn. 2.11) and T the temperature. The 

no ta t i on Ct(s) s i g n i f i e s the h i s t o r y of C (eqn. 2.12) from -o°<s<t . 

Note that in general the complete h is tory of the deformation C (or of 

E equi val e n t l y , eqn. (2.17)) are r e q u i r e d , wh i l e f o r R only the 

instantaneous current value is used, for ro ta t ing the stresses. 

The second Piola-Kirchhoff stress S is object ive as such (being 

r e l a t ed to a f i x e d re ference c o n f i g u r a t i o n ) . In terms of i t eqn. 
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(2.35) may be rephrased as 

S - B ( C t ( s ) , T t ( s ) ) (2.36) 

The advantage of using the 2nd Piola-Kirchhoff stress tensor for to ta l 

formulations is evident (see also sect. 3 .5 .1) . 

Some types of E l a s t i c and P l a s t i c ra te equat ions are discussed 

below. For s imp l i c i t y , a t tent ion is centred on the isothermal case. 

2.5.1 RATE EQUATIONS 

Materials without memory or wi th smooth memory may be described 

with rate equations, e .g. 

a= g ( d , a , F ) (2.37) 

where a is a stress rate which is object ive for r i g i d body ro tat ions. 

The choice of o b j e c t i v e ra te is not unique. A v a r i e t y of opt ions are 

avai lab le, the two most widely used being the Jaumann rate 

a = a + a w + wTa (2.38) 

and the Truesdell ra te , 

G = <7 - ( j l T - 1(7+ a t r ( l ) (2.39) 

In equat ion (2.37) a provides the c o n s t i t u t i v e par t of the 

s t ress increment . Eqns. (2.38) or (2.39) de f ine the remain ing terms 

tha t must be added f o r o b j e c t i v i t y . Formula t ions based on e i t h e r 

object ive rate may be made equivalent by adjust ing the cons t i tu t i ve 

law, g. However, i f g i s pos tu la ted a - p r i o r i , independent ly of the 

choice of o b j e c t i v e r a t e , both f o r m u l a t i o n s give r i s e to d i f f e r e n t 

cons t i tu t i ve behaviour. 

The need for special object ive rates is avoided i f the equations 

are formulated in a material se t t i ng , e .g. 
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S = g.(E,E,S) (2.40) 

S is the material t ime rate of a tensor on the current conf igurat ion 

(2nd Pio la-Ki rchhof f ) , which is already object ive. 

2.5.2 ELASTICITY 

E l a s t i c m a t e r i a l s are those f o r which a n a t u r a l , s t r e s s - f r e e 

state ex is ts , to which the body returns upon removal of a l l external 

forces. The stress depends on the deformation from th i s natural s ta te : 

S = f ( C , t ) (2.41) 

A perfect memory of the natural s ta te , with no memory of intermediate 

states, is exh ib i ted. 

For l i n e a r e l a s t i c i t y and small s t r a i n s the r e l a t i o n is as 

fol1ows: 

o = c:e (2.42) 

(in component form er1J = c^-j e*') 

c is termed the elasticity tensor, and e is the small strain tensor: 

ei ij = (ui,j + u j , i > / 2 (2'43> 

where u are displacements. For isot rop ic mater ia ls , and provided a 

and e are both symmetric, c must take the form 

c i j k l " X « i j 5 k l + 2 G 5 i k S j l (2.44) 

where X and G are c a l l e d Lame's cons tan ts . This gives r i s e to the 

classic generalized Hooke's law: 

ffij = ^ k k 5 i j + 2 G e i j ( 2 - 4 5 ) 
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2.5.2.1 HYPERELASTIC MATERIALS 

The concept of Hyperelast ic i ty was introduced by Green and given 

i t s present name by Truesdel l (e.g. Truesde l l and Toupin, 1960). I t 

postulates the existence of a strain-energy funct ion from which the 

stresses may be derived as 

S = ft, ( d W / d E ) (2.46) 

Assuming the necessary d i f f e r e n t i a b i 1 i t y , the e l a s t i c i t y tensor i s 

defined as 

D = P0 (d^/d^) (2.47) 

and a rate equation may be written as 

S = D:E (2.48) 

(in component form S = D \ \ E ) 

For a constant value of D, a l i n e a r hype re l as t i c t o t a l equat ion 

is obtained: 

S = D:E (2.49) 

2.5.2.2 HYPOELASTIC MATERIALS 

The term Hypoelastic, also introduced by Truesdell (Truesdell and 

Toupin, 1960), cha rac te r i zes a ma te r i a l f o r which the behaviour is 

def ined in the cu r ren t c o n f i g u r a t i o n by an i n c r e m e n t a l l y l i n e a r 

re lat ionship of the form: 

0= c:d (2.50) 

( in component form &1J = c1J
k-]d ) 

An o b j e c t i v e s t ress ra te must be used f o r eqn. (2.50) (see sec t ion 
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2 . 5 . 1 ) . 

Hypoelastic behaviour is very convenient for descript ions based 

on the cu r ren t c o n f i g u r a t i o n . Ma te r i a l data based on t r u e s t ress -

natural s t ra in re lat ionships (see section 6.1) give r ise natura l ly to 

hypoelastic i n te rp re ta t ions . 

For isotropic materials eqn. (2.50) takes the form 

a = \ t r ( d ) I + 2Gd (2.51) 

( in orthonormal components o^- = A d ^ 8^ + 2Gd̂  •) 

2.5.3 PLASTICITY 

For most so l ids , behaviour may be assumed e las t ic only w i th in a 

c e r t a i n s t ress range. Beyond the e l a s t i c range y i e l d o c c u r s , 

deformat ions being cha rac te r i zed by permanent changes occasioned by 

s l i p or d is locat ions at the atomic level (Plast ic f low) . 

A f t e r y i e l d , E l a s t i c and P l a s t i c deformat ions are assumed to 

happen concu r ren t l y ( E l a s t i c - P l a s t i c m a t e r i a l s ) . More r e s t r i c t i v e 

i d e a l i z a t i o n s are prov ided by r i g i d - p l a s t i c models (only p l a s t i c 

deformations). An addi t ive decomposition of the rate of deformation is 

assumed here: 

d = de + dP (2.52) 

where super ind ices e and p i n d i c a t e e l a s t i c and p l a s t i c components 

r e s p e c t i v e l y . Add i t i ve decomposi t ion of st ra ins in th is fashion was 

proposed by H i l l (1950). Lee (1969) has proposed a m u l t i p l i c a t i v e 

decomposition of deformation gradients instead, F = Fepp, while Green 

and Naghdi (1965) have advocated an a d d i t i v e decomposi t ion of t o t a l 

s t r a i n , E = Ee + EP. 

C lass ica l p l a s t i c i t y is fo rmu la ted in terms of the cu r ren t 

c o n f i g u r a t i o n ( H i l l , 1950). Hence the p o p u l a r i t y of an a d d i t i v e 

decomposition of the rates of deformation, eqn. (2.52), coupled wi th 
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hypoelastic behaviour, fo r E las t i c -P las t i c material descript ions (e.g. 

Wi 1 kins (1964), H ibb i t , Marcal and Rice (1970)). In th i s case 

<7= c : d e = c : (d -dP) (2.53) 

The y i e l d c r i t e r i o n determines the l i m i t of the e las t i c range: 

F( a ,Q) = 0 (2 .54) 

where Q is a set of p las t i c hardening parameters. For F<0 the material 

behaves e l a s t i c a l l y . Two addit ional sets of re lat ions must be provided 

to determine f u l l y the s t ress-s t ra in behaviour: 

- Flow rule dP = 7R( a,Q) (2.55a) 

- Hardening rule Q= 7H( a ,Q) (2.55b) 

where 7 is an a rb i t ra ry m u l t i p l i e r , whose value is determined from 
o 

the simultaneous solut ion of eqns. (2.54), (2.55). An object ive rate Q 

must be used in eqn. (2.55b). 

Drucker (1951) pos tu la ted a c r i t e r i o n for stable work-hardening 

mater ials. This involves the work done by a set of s e l f - e q u i l i b r a t i n g 

forces, requ i r ing: 

a :d > 0 (2 .56a) 

a :d p ^ 0 (2.56b) 

The equal sign in (2.56b) holds f o r p e r f e c t l y p l a s t i c m a t e r i a l s (no 

hardening). A consequence of Drucker's postulate is the assoc ia t i v i t y 

of p las t i c f low: for a smooth part of the y i e l d surface, 

dp = 7 ( d F / d a ) (2 .57) 

which in a n ine-d imens iona l s t ress space may be i n t e r p r e t e d as the 

normality of dP to the surface F( c ,Q) . 
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2.5.3.1 VON MISES MODEL 

Par t i cu la r l y usefu] and simple models are derived from the y i e l d 

c r i t e r i on of Von Mises (1913). This may be wr i t ten as 

F = (3/2)s:s - Y2 = 0 (2.58) 

where s are the deviatoric Cauchy stresses, 

s = a - (l/3)tr(a)I (2.59a) 

( in orthonormal components, s ^ = a^- - (1/3) o-^ 5 . . (2.59b) 

Y is the y i e l d s t reng th of the m a t e r i a l , which co inc ides w i t h the 

y i e l d s t ress in u n i a x i a l tens ion (see sec t ion 6.1). The Von Mises 

y i e l d c o n d i t i o n is independent of vo lumet r i c s t r esses , which are 

assumed to behave e l a s t i c a l l y . 

An isotropic hardening model is obtained by making Y a funct ion 

of the e f fec t ive p las t i c s t r a i n , e P: 

Y = Y(e p ) (2.60a) 

with eP = J 6 e p = J A 2/3) dp: dP dt (2.60b) 

A more general hardening model, incorporat ing Bauschinger e f fec t , 

may be obtained by combining isot rop ic hardening wi th the kinematic 

hardening proposed by Prager (1956) and Z i e g l e r (1959), g i v i ng the 

y i e l d condit ion 

F = ( 3 / 2 ) ( s - a ) : ( s - a ) - Y2 (2.61) 

o: i s c a l l e d the back-s t ress and represents a k inemat ic hardening 

parameter ( t rans la t ion of the Von Mises c i r c l e ) . The associat ive f low 

ru 1 e is 

dP = 7 ( s - a ) (2.62) 
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and the hardening laws, 

a= (2/3)hadP (2.63a) 

Y = hy eP (2.63b) 

Imposing the cons is tency c o n d i t i o n (F = 0) dur ing l o a d i n g , and 

combining eqns. (2.51), (2.53), (2.61)-(2.63), the s t r e s s - s t r a i n 

re la t ion is found to be 

a = c:Ld - ( s - a ) ( 3 / 2 ) d : ( s - a ) / Y 2 ( i + h ' / 3 G ) J (2.64) 

where h' = hy+ na ( p l a s t i c modulus). Purely i s o t r o p i c hardening i s 

obtained with h a =0, and purely kinematic with hY=o. 

In a u n i a x i a l t e s t , law (2.64) w i l l p rov ide an E l a s t o p l a s t i c 

hardening modulus of 

h = 1/L1/E + 1/h'J (2.65) 

where E - G(3 X+2G)/( X+G) (Young's modulus of elasticity). 

2.5.3.2 OTHER PLASTICITY MODELS 

P l a s t i c i t y in s o i l s i s gene ra l l y considerably more complicated 

than the above Von Mises model. Pressure dependent y i e l d , anisotropy, 

d i l a t a t i o n and n o n - a s s o c i a t i v i t y , hys te re t i c cyc l ic behaviour, pore 

pressure, are impor tan t fea tu res f o r s o i l p l a s t i c i t y . An e x c e l l e n t 

review of th is topic has been given by Marti and Cundall (1980). 

The mathematical theory of p l a s t i c i t y i s a f i e l d s t i l l under 

development. Very ref ined phenomenological models have been proposed 

(e.g. Mroz (1967), Prevost (1978)). These models are based on 

m u l t i p l e - s u r f a c e i d e a l i z a t i o n s . They provide elaborate s t ress-s t ra in 

laws r e q u i r i n g cons iderab le c o m p u t a t i o n a l c o s t f o r n u m e r i c a l 

mode l l i ng , thus in p r a c t i c e they are hard ly used. This f a c t has been 

acknowledged by O r t i z and Popov (1983), who propose s i m p l e r , one-

surface models for metal p l a s t i c i t y . 
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F i n a l l y , a p r i n c i p l e t o be h e l d p resen t when c h o o s i n g a 

p l a s t i c i t y mode l , i s t h a t i t can on l y be as r e l i a b l e and as 

s o p h i s t i c a t e d as the e x p e r i m e n t a l i n f o r m a t i o n on wh ich the 

determination of the model parameters is based. For example, there is 

l i t t l e po in t in us ing anyth ing other than a Von Mises i s o t r o p i c 

hardening model in a me ta l , i f a l l the i n f o r m a t i o n a v a i l a b l e i s a 

uniaxial s t ress-s t ra in law. On the other hand, the added complicat ion 

of some models may not be necessary i f the load ing is main ly 

monotonic. 
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3.1 INTRODUCTION 

The Governing equat ions in s o l i d mechanics are the equat ions of 

mot ion, which can be w r i t t e n in component form as 

a i j 5 j + p ( f i - i i i ) = 0 (3 .1) 

where cr^j - j s the Cauchy s t ress t enso r , p the mass d e n s i t y , f-j are body 

forces per u n i t mass ( t y p i c a l l y g r a v i t y ) , and u i d isp lacements . These 

equat ions o r i g i n a t e f rom the balance of momentum p r i n c i p l e (sec t ion 

2.4.2) . Th i s p r i n c i p l e may be s t a t e d a l t e r n a t i v e l y i n i n t e g r a l f o r m 

(eqn. 2 .28 ) . 

The p a r t i a l d i f f e r e n t i a l eqns. of m o t i o n (3.1) depend upon 3 

space and 1 t i m e v a r i a b l e s . The n u m e r i c a l models d e s c r i b e d he re 

per form independent s e m i d i s c r e t i z a t i o n s i n space and t i m e . F i r s t eqns. 

(3.1) a re d i s c r e t i z e d i n space , y i e l d i n g a sys tem of o r d i n a r y 

d i f f e r e n t i a l eqns. i n t i m e . These a re t hen i n t e g r a t e d w i t h a t i m e -

s tepp ing p rocedure . 

The d i s c r e t i z a t i o n of the cont inuum may be achieved e i t h e r w i t h 

F i n i t e E lement (FE) or F i n i t e D i f f e r e n c e (FD) methods . Both methods 

have had s e p a r a t e h i s t o r i c a l d e v e l o p m e n t s , a l t h o u g h some degree of 

c o n v e r g e n c e has been r e a c h e d l a t e l y i n t h e l i t e r a t u r e ( e . g . 

B e l y t s c h k o , 1983). The t h e o r e t i c a l p r i n c i p l e s f o r bo th methods are 

d i f f e r e n t : l oca l t r u n c a t i o n e r r o r s f o r FD, g lobal e r r o r norms f o r FE. 

However, FE methods are a lso based on independent shape func t i ons f o r 

each e l e m e n t . As a r e s u l t , FE and FD f o r m u l a t i o n s o f t e n produce 

equ iva len t a l go r i t hms (e.g. Kunar and Minowa, 1981). 

O ther n u m e r i c a l methods need o n l y a d i s c r e t i z a t i o n i n t h e 

bounda ry : t h e Boundary E lement Methods (BEM). These were f i r s t 

p roposed f o r s o l i d mechanics by R izzo (1967) and Cruse (1969) . 

C o n s i d e r a b l e a d v a n t a g e can be g a i n e d by t h e r e d u c t i o n and 

s i m p l i f i c a t i o n of the d i s c r e t i z a t i o n . For non l i nea r problems, however, 

BEM lose much of t h e i r appeal. Volume i n t e g r a l s appear which requ i re 

an a d d i t i o n a l d i s c r e t i z a t i o n of the cont inuum (e.g. Garc ia , 1981). For 

t h i s reason BEM w i l l not be reviewed here. 
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Time i n t e g r a t i o n may be performed e i t h e r by modal ana lys is 

methods or by d i r e c t i n t e g r a t i o n ( t ime-march ing) . Modal ana lys i s 

requi res t r ans fo rma t i ons i n t o the frequency domain which are only 

val id in a l inear regime, for which reason they must be ruled out for 

nonlinear models. As to time-marching procedures two main a l ternat ives 

e x i s t , e x p l i c i t or i m p l i c i t methods. Both have advantages and 

disadvantages, which w i l l be reviewed b r i e f l y in th is chapter. Recent 

a l te rnat ive procedures based on operator s p l i t t i n g methods w i l l also 

be considered. 

3.2 FINITE DIFFERENCE METHODS 

F i n i t e D i f fe rence methods have been used f o r a long t ime by 

engineers w i th in relaxat ion procedures (e.g. Southwell, 1940). F in i t e 

D i f fe rence operators prov ide loca l approx imat ions f o r a system of 

coupled d i f f e r e n t i a l equat ions. Due to t h i s f a c t , a one-step g lobal 

solut ion is not possible and recourse must be made to relaxat ion and 

i t e r a t i v e techniques. A d d i t i o n a l l y , FD methods have been assoc ia ted 

norma l l y w i t h regu la r zoning (at l eas t t o p o l o g i c a l l y r e g u l a r ) . For 

these two reasons, FD methods were eclipsed by the F in i te Element boom 

in the 1960's for s t ruc tura l and so l id mechanics appl icat ions. FD has 

always been popu lar , however, in other areas such as Eu le r ian f l u i d 

mechanics (e.g. Nichols, H i r t , and Hotchkiss, 1980). 

For a r e g u l a r mesh w i t h " I " and " J " l i n e s a l o n g the two 

coordinate d i rec t ions , standard f i n i t e di f ference approximations for 

the gradient of a vector u are given by: 

u I + l / 2 , J + l / 2 a J _ ( u I + l , J + l / 2 _ u I , J + l / 2 ) 

u | : i / 2 , J + l / 2 = 1_ ( u I + l / 2 , J + l _ u j + l / 2 , J ) 

Ax.£ 

Eqns. (3.2) requ i re the mesh to be topo l o g i c a l l y 

regular. 

The use of contour integral formulas (Wi lk ins, 1964) allows the 

appl icat ion of FD approximations to topo l ogi cal l y and g e o m e t r i c a l l y 

i r regu lar meshes. The basic idea is to employ Gauss' theorem in order 

(3.2) 

and g e o m e t r i c a l l y 



to express the g rad ien t of a f i e l d in a c e l l in terms of a contour 

in tegra l . Considering ce l l VE enclosed by contour SE, and the gradient 

of the displacement vector u, 

J u i5JdV = [ u^jdS (3.3) 

If the gradient is assumed constant in the cell, then 

1 f 
ui ,j = - I u^jdS (3.4) 

VEJSE 

The contour integral may be evaluated assuming a l inear var ia t ion of u 

along the edge of the c e l l . 

Contour i n t e g r a l s may be used f o r any 2-0 polygon or 3-D 

polyhedron, to i n t e r p o l a t e a value f o r the g rad ien t at the cen t re o 

the c e l l , knowing the values at the corner nodes. For the p a r t i c u l a r 

cases of t r i a n g l e s and t e t r a h e d r a , an a l t e r n a t i v e technique i s 

avai lable (e.g. Mar t i , 1981), in which the gradients are interpolated 

d i r e c t l y by i n v e r t i n g the s p a t i a l f i n i t e d i f f e r e n c e equat ions. This 

technique has been fol lowed in the present work, and w i l l be detai led 

i n sec t i on 4.2 .1 . 

For e x p l i c i t time-marching models the semi-discrete equations of 

motion become uncoupled. This means that only local approximations to 

the p a r t i a l d i f f e r e n t i a l equat ions (3.1) are performed w i t h i n each 

t i m e - s t e p , no i t e r a t i o n s being needed f o r a FD opera tor . Such a f a c t 

was exploited in the development of the f i r s t FD "Hydrocodes" at the 

U.S. na t iona l l a b o r a t o r i e s in the 1950's. These were o r i en ted main ly 

towards sensit ive nuclear and defence appl icat ions. L i t t l e pub l i c i t y 

was given u n t i l the 1960's (Wilkins (1964), Maenchen and Sack (1964), 

Noh (1964)). At t h i s t ime F i n i t e Element Methods had j u s t been 

in t roduced f o r s o l i d mechanics (Clough, 1960), and techniques were 

being developed for l inear analysis. Not much at tent ion was given to 

FD f o r s o l i d mechanics by the eng ineer ing community, as indeed FE 

methods seemed much more powerful and indeed advantageous for l inear 

systems, being able to provide a one-step global so lu t ion . 

I n t e r e s t in the non l inear and wave-propagat ion regimes f o r 

spec ia l i zed eng ineer ing a p p l i c a t i o n s in the l a t e 1960's and 1970's 
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created a resurgence of the Hydrocodes (Bertholf and Benzley (1968), 

Wilkins (1975)), and a cer ta in degree of convergence between FD and FE 

l i t e r a t u r e (Belytschko (1978), Kr ieg and Key (1976), Goudreau and 

Hal lquist (1982)). Exp l i c i t f i n i t e - d i f f e r e n c e methods were popularized 

to wider sectors of the eng ineer ing community, and new codes were 

created such as PISCES (Hancock, 1976), the rock mechanics codes of 

Cundall and Marti (1979), and PR3D for so l id mechanics impact by Marti 

(1981). 

3 .3 FINITE ELEMENT METHODS 

The f i r s t appl icat ion of F in i te Element techniques for continua 

was by Clough (196U), a l though the t h e o r e t i c a l bases f o r the method 

had already been set by Courant (1943) and appl icat ions to s t ructura l 

analysis had been proposed ear l i e r (Argyris and Kelsey, 1954). 

F in i te Element d iscre t iza t ions rely on two essential ingredients: 

a v a r i a t i o n a l or weak form of the eqns. of mot ion (3.1), and a 

c o n s t r u c t i o n of approximate s o l u t i o n s based on genera l i zed nodal 

coordinates and independent element shape funct ions. 

The domain V i s subdiv ided i n t o elements VE, in te rconnec ted by 

nodes. An approximate solut ion is constructed w i th in an element E as a 

product of shape functions N^x) and the nodal displacements u f ( t ) : 

u ( x , t ) = u ^ ( t ) N j ( x ) ( 3 . 5 ) 

where I is summed over the nodes of the element. The shape functions 

are chosen so tha t u is cont inuous over the element boundar ies, 

a l though i t s g rad ien t need not be cont inuous (CO c o n t i n u i t y ) . The 

shape f unc t i ons Ni s o de f ined are independent of t i m e ; eqn. (3.5) 

c o n s t i t u t e s i n f a c t a l o c a l s e p a r a t i o n o f v a r i a b l e s 

(semi d isc re t i zat i on ). 

The discrete form of the gradient operator may be wr i t ten as 

u i ' j " B j l u i l (3.6) 
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where 

BJi 
dxi 

Let the s o l i d continuum be V w i t h boundary S, c o n s i s t i n g of Sy 

and S j ' w h e r e 

u = u* on Su 

a n = T* o n sT 

A weak form of the eqns. of motion (3.1) may be obta ined by us ing 

e i ther Galerkin weighed residuals or the v i r t ua l work p r i nc ip l e , both 

of which y ie ld the same resu l t : 

f V i , j C T i j d V + r p v i u i d V = JpV i f i dV + [v-jT^dS (3.7) 

V V V ST 

where v is the test funct ion (or var ia t ion) and u the t r i a l func t ion . 

Eqns. (3.7) requ i re only C° c o n t i n u i t y f o r both t r i a l and t e s t 

f u n c t i o n s , as opposed to (3.1), f o r which Cl c o n t i n u i t y is needed. I f 

the approximations defined in (3.5) are used for u and v, and because 

(3.7) must hold f o r a r b i t r a r y v, the g lobal d i s c r e t e equat ions are 

deduced: 

Mu + P(u) = R (3.8) 

where the global c o e f f i c i e n t mat r ices M, P, R are assembled from 

indiv idual element matrices that take the form: 

ME= / pNjNj&jjdV (mass matr ix; 

VE 

PE= / B j j ^ j d V ( internal forces) (3.9; 
J VE 

RE= / f-j NjdV +f NIT idS (external forces) 

v£ Js$ 
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(3.8) is a system of ordinary d i f f e r e n t i a l equations of second order 

in t i m e ; i n t e g r a t i o n of these is discussed in sec t i on 3.6. For a 

l inear model (small deformations and e las t ic behaviour), (3.8) becomes 

Mii + Ku = R (3.10) 

The s t i f fness matrix K is assembled from element matrices of the type 

KE = / 6 j j C i j k l B 1 K d V (3.11) 

J vE 

In s ta t ic analysis the i ne r t i a term may be dropped from eqns. (3 .8 ) : 

P(u) = R (3.12) 

which for the linear case becomes 

Ku = R (3.13) 

For l i n e a r a n a l y s i s , a s o l u t i o n is obta ined merely by i n v e r t i n g the 

s t i f f n e s s ma t r i x K in eqns. (3.10) or (3.13). In a non l inear case, 

eqns. (3.8) or (3.12) must be solved in a number of steps using Newton-

Raphson or i t e r a t i v e techniques. I t is in te res t ing to note the a b i l i t y 

of FE to give a one-step s o l u t i o n to the l i n e a r problem, which F0 

methods lack , having to approach the g lobal s o l u t i o n through 

r e l a x a t i o n and i t e r a t i o n . Hence the p o p u l a r i t y of FE f o r l i n e a r 

problems. For nonlinear behaviour, however, th i s advantage disappears'* 

as both FE and FD have to perform some sort of i t e ra t i ons . 

For large systems, the assemblage of matrix K is undesirable, as 

core memory l i m i t s may be exceeded and recourse must be made to slow, 

cost ly disk Input/Output. This fact accounts for the popular izat ion of 

r e l a x a t i o n techniques f o r equa t i on s o l v i n g (e .g . F lanagan and 

Belytschko, 1981a), which avoid the assemblage of global coe f f i c ien t 

ma t r i ces . The FE operators are used only at a loca l l e v e l . In t h i s 

case FE become conceptually very s im i la r to FD methods with general 

topology, special ly as they o f ten prov ide equ iva len t a l go r i t hms f o r 

the local approximations (Kunar and Minowa, 1981). 
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3.4 MESH DESCRIPTIONS 

Let a p a r t i c l e X of body B be def ined by i t s p o s i t i o n at t=0 

( re ference c o n f i g u r a t i o n ) , X . At t ime t ( cu r ren t c o n f i g u r a t i o n ) the 

posi t ion of the pa r t i c le w i l l be 

x = x(X, t ) (3 .14) 

x are called the spatial coordinates, and X the material coordinates 

of X. Eqns. (3.14) describe the motion of 8. 

For the discretization of B three types of meshes may be used, 

depending on the motion of the nodes of the mesh. The position of a 

point of the mesh, initially coincident with particle X, will be given 

by X = X(X,t). 

3.4.1 LAGRANGIAN 

In a lagrangian description the mesh follows the motion of the 

body, 

X(X,t) = x(X,t) (3.15) 

A given node remains co i nc i den t w i t h the same ma te r i a l p a r t i c l e 

throughout the motion. Each element w i l l contain the same domain of 

material throughout the de fo rma t i on , thus en fo r c i ng i m p l i c i t l y the 

cont inu i ty equation. 

Motion of the boundary does not present d i f f i c u l t i e s , as i t 

always co inc ides w i t h the mesh boundary. For a sca la r f i e l d g (X , t ) , 

the material t ime der ivat ive ( i .e. fo l low ing the pa r t i c l e ) coincides 

wi th the par t ia l time der iva t ive : 

dg 
g = - (3 .16) 

dt 

The only disadvantage of th is descr ipt ion comes from the fact that the 

mesh can become excess ive ly d i s t o r t e d f o r c e r t a i n problems (e.g. 

f l u i d s , high v e l o c i t y impact ) . In some cases, " rezon ing" techniques 
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may be used to circumvent this problem (e.g. Kalsi and Marti, 1985). 

3.4.2 EULERIAN 

In an Eulerian description the mesh is fixed in space, i.e. 

X(X,t) = X (3.17) 

Nodes are no longer coincident wi th material par t ic les through t ime, 

and the material f lows through the c e l l s . Continuity must be enforced 

e x p l i c i t l y . The ma te r i a l t ime d e r i v a t i v e of g (X> t ) inc ludes a f l u x 

term: 

69 39 dx dg d9 
g = _ + = _ + _ v (3.18) 

dt dx dt dt dx 

Numerical computat ions f o r the f l u x of sca la r f i e l d s tend to smear 

t he i r values, which w i l l not be defined as sharply as for a Lagrangian 

mesh. Ma te r i a l boundaries are d i f f i c u l t to desc r i be , as they move 

re la t i ve to the mesh. On the c red i t side, d i s t o r t i on is not a problem, 

making Eulerian meshes preferrable to Lagrangian meshes for very large 

deformations. 

3.4 .3 ARBITRARY LAGRANGIAN-EULERIAN 

A r b i t r a r y Lagrang ian-Eu le r ian (ALE) d e s c r i p t i o n s at tempt to 

combine the advantages of Lagrangian and Eu le r ian meshes. The mesh 

moves w i t h an a r b i t r a r i l y def ined mot ion , X ( X , t ) . d X / d t = 0 f o r an 

Eulerian mesh, dX/dt=v for a Lagrangian mesh. X can be defined so as 

to fo l low the material in the boundary, but without causing excessive 

d i s t o r t i o n in the i n t e r i o r . ALE f o r m u l a t i o n s have been developed by 

Noh (1964) and H i r t et a l . (1974) in FO f o r m a t s , and by Donea et a l . 

(1977) and Belytschko and Kennedy (1978) in FE. 

Material der ivat ives are given by 

d9 dx 59 
g = _ + (3.19) 

dt dt dx 
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With an ALE d e s c r i p t i o n p rope r t i es s t i l l need to be f l uxed through 

c e l l s , and some smearing may occur as a resu l t . 

A c r u c i a l aspect in ALE d e s c r i p t i o n s is the d e f i n i t i o n of the 

a r b i t r a r y motion of the mesh X f o r i n t e r n a l po in t s . General ly a 

complex rezoning algor i thm is necessary for opt imizing the new mesh 

p o s i t i o n s at each s tep. Such a general rezoning a l g o r i t h m has been 

proposed f o r 2-D by G i u l i a n i (1982). Schreurs (1983) has proposed a 

mesh o p t i m i z i n g a l g o r i t h m based on the de format ion of a f i c t i t i o u s 

ma te r i a l from an " i d e a l " mesh. In f a c t ALE techniques would be 

equivalent to Lagrangian descript ions in which rezoning is performed 

at every s tep. Some a p p l i c a t i o n s (e.g. metal fo rm ing) may not need 

such f requent rezon ing , and Lagrangian techniques w i t h rezoning at 

wider in terva ls could be preferrable. 

3.5 LARGE DISPLACEMENT FORMULATIONS 

Severa l f o r m u l a t i o n s are p o s s i b l e depend ing on wh ich 

c o n f i g u r a t i o n s the s t ress and deformat ion tensors are r e f e r r e d t o . 

Three a l ternat ives widely used in so l id mechanics are presented below. 

3.5.1 TOTAL LAGRANGIAN 

The 2nd P i o l a - K i r c h h o f f s t ress tensor S and the Green s t r a i n 

tensor E, both of which r e l a t e to the re ference c o n f i g u r a t i o n , are 

used to descr ibe the mate r ia l behaviour. H i b b i t , Marcal and Rice 

(1970) proposed th i s descr ipt ion in the f i r s t published la rge -s t ra in , 

large-displacement nonlinear formulat ion for general purpose FE codes. 

A cons t i tu t i ve re la t ion is given by 

S = S(E) (3.20) 
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and in rate form by 

S = D:E (3.21) 

(S IJ = DIJKLEKL components) 

S and E being ma te r i a l t enso rs , t h e i r ma te r i a l rates are o b j e c t i v e . 

This formulat ion is advantageous f o r Hypere las t i c m a t e r i a l s , whose 

behaviour is described on the reference conf igurat ion. In th is case, 

ca l l i ng W the s t ra in energy funct ional per un i t mass, 

d2W 

dE2 (3.22) 

aw 
s = — 

d£ 

E l a s t i c - p i a s t i c ma te r i a l behaviour is best descr ibed on the 

cu r ren t c o n f i g u r a t i o n , x ( H i l l , 1950). I t i s poss ib le to t r ans fo rm 

such a law i n t o one of the type (3.21) (e.g. H i b b i t et a l . (1970), 

Kr ieg and Key (1976)), but complex and compu ta t i ona l l y expensive 

transformations are necessary. However, Simo and Ort iz (1985) suggest 

that to ta l Lagrangian, Hyperelastic-type formulat ions provide a more 

r igorous approach f o r i n c r e m e n t a l , n o n - l i n e a r c a l c u l a t i o n s . Such 

r i gour is not j u s t i f i e d in e x p l i c i t c a l c u l a t i o n s w i t h very smal l 

steps. 

3.5.2 CAUCHY STRESS-VELOCITY STRAIN 

A descript ion based on the current conf igurat ion may be used to 

model the behaviour of materials wi th smooth memory. In the simplest 

case, the Jaumann ra te of Cauchy s t ress ( a ) and the ra te of 

deformation tensor (veloc i ty s t r a i n , d) are related by 

ff= C:d (3.23) 

( ajj = C j ^ i d k i in component form) 
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where C is the c o n s t i t u t i v e tensor . For an e l a s t i c - p l a s t i c mate r ia ' 

(hypoelastic with associated p l a s t i c i t y ) C takes the form 

C i j k l = ^ i j 5 k i + 2G(5 i k5J 1 - ^ i j n k i ) (3.24) 

where rj >0 for p las t ic loading, =0 otherwise 

n is the un i t normal to the y i e l d surface 

The Jaumann d e r i v a t i v e used i n eqn. (3.23) p r o v i d e s t h e 

cons t i tu t i ve part of the stress rate. To obtain the to ta l stress rate 

the ro tat ional components must be added: 

a• • = o- • + w• n • + w- a • 
1J 1J W1PCTPJ WJP pi (3 .25) 

I f the mate r ia l behaviour is a n i s o t r o p i c , C must be updated w i t h a 

s imi lar object ive rate: 

c i j k l _ c i j k l + w i p c p j k l + w j p c i p k l + w k p c i j p l + w l p c i j k p (3.26) 

An a l te rna t ive formulat ion results from the use of the Truesdell 

rate in eqn. (3.23): 

(J= C:d :3.27 

(3.23) and (3.27) are equivalent i f one sets 

C i j k l = C i j k l + CTij5kl-^ik5jl+oril5jk+(7jk5il + CTil5ik)/2 ( 3 - 2 8 ) 

The Truesdel l s t ress ra te is the fo rward P io la t r a n s f o r m a t i o n 

(eqns. 2.22, 2.25) of the ra te of the 2nd P i o l a - K i r c h h o f f s t ress 

tensor: 

O = 0 t * ( J - 1 S ) [3.29) 

Pinsky, Ort iz and Pister (1983) have suggested that the Truesdell 

r a t e f o r m u l a t i o n i s t h e n a t u r a l one t o use ( i n t h e c u r r e n t 

c o n f i g u r a t i o n ) f o r h y p e r e l a s t i c i t y . In t h i s case the c o n s t i t u t i v e 

tensor is obtained d i r e c t l y , from the to ta l Lagrangian tensor D, as 
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£ = 0 t * ( j - l D ) . 

C lass i ca l p l a s t i c i t y is descr ibed on the current conf igurat ion 

( H i l l , 1950). Jaumann Cauchy stress formulat ions have been widely and 

success fu l l y used f o r e l a s t i c - p l a s t i c behaviour (Wi l k ins (1964), 

Maenchen and Sack (1964) , K r i e g and Key (1976) ) . W i th such 

f o r m u l a t i o n s h y p e r e l a s t i c b e h a v i o u r ( r e l a t e d to the o r i g i n a l 

conf igurat ion) may also be described, a lbe i t in a less convenient way, 

as the c o n s t i t u t i v e r e l a t i o n s need to be pushed fo rward i n t o the 

current conf igura t ion . 

F i n a l l y , one problem w i t h t h i s f o r m u l a t i o n is t ha t d is not 

i n t e g r a b l e ( i . e . i t i s not the ra te of any v a l i d s t r a i n t enso r ) . 

Additional s t ra in computations must be done i f a to ta l s t ra in measure 

is requi red. 

3.5.3 UPDATED LAGRANGIAN 

In t h i s f o r m u l a t i o n the model is descr ibed on a reference 

conf igurat ion, which is updated at each increment to coincide wi th the 

cu r ren t c o n f i g u r a t i o n . From t h i s updated reference, the incremental 

conf igurat ion is described wi th a t o ta l Lagrangian formulat ion. This 

method was f i r s t proposed by Yaghmai and Popov (1971), and has been 

wide ly used since f o r incrementa l non l inear a n a l y s i s : Osias and 

Swedlow (1974), Bathe et a l . (1975), Nagtegaal and de Jong (1981). 

For t h i s d e s c r i p t i o n , F = I ( i d e n t i t y ) and J = 1. Hence, eqn. 

(3.29) imp l i es S = a. I t i s a lso easy to see from eqn. (2.19) t ha t E = 

d. In f a c t t h i s f o r m u l a t i o n reve r t s to the Truesde l l Cauchy s t ress 

ra te f o r m u l a t i o n , eqn. (3.27). This means t ha t the tensor to be used 

for the tangential s t i f fness is £. 

3.6 TIME INTEGRATION 

Using e i ther F in i te Difference or F in i te Element Methods for the 

spat ial semid iscre t iza t ion, the par t ia l d i f f e r e n t i a l eqns. of motion 

(3.1) may be t rans formed i n t o a system of o rd ina ry d i f f e r e n t i a l 
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equations in t ime: 

Mii + Cu + P(u) = R (3.30) 

These eqns. can be solved e i t h e r by modal ana l ys i s or by d i r e c t 

i n t e g r a t i o n . Modal ana lys is methods (e.g. Bathe and Wilson (1976), 

chpt . 8) per form t r a n s f o r m a t i o n s of eqns. (3.30) which are only 

va l id for l inear or quasi - l inear systems ( i .e. P(u) = Ku) 

For non l inear a n a l y s i s , d i r e c t i n t e g r a t i o n ( t ime-march ing) 

methods must be used. For these the t ime domain is divided into t ime-

steps {At), and an incremental analysis is performed for each step. 

Time integrat ion procedures may be c l ass i f i ed in to e x p l i c i t and 

i m p l i c i t . Exp l i c i t schemes compute the incremental displacements u 

from the e q u i l i b r i u m cond i t i ons at t ime t . I m p l i c i t schemes, on the 

c o n t r a r y , solve the eqns. of motion (3.30) at t+hAt > t , producing an 

i m p l i c i t system of eqns. for ut+At. 

Two of the most common and rep resen ta t i ve t i m e - i n t e g r a t i o n 

schemes, one in e i ther c lass, are presented below. 

3.6.1 CENTRAL DIFFERENCE (EXPLICIT) 

Central d i f f e r e n c e methods are the most w ide ly used e x p l i c i t 

schemes for so l id mechanics, being the optimal from a very wide class 

(Key, 1978). The F in i te Difference expressions used for ve loc i ty and 

acceleration are 

a n + l / 2 = ( l / i+ l_ j i ) M t ( 3 > 3 1 a ) 

iin = ( u n + 1 / 2 - u n " 1 / 2 ) / A t (3.31b) 

Note t h a t each d e r i v a t i v e lags the value by ha l f a t i m e - s t e p . 

Par t i cu la r iz ing the equations of motion (3.30) at time n, 

Mun + Cun + P(un) = Rn (3.32) 
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Using eqn. (3.31b) and l e t t i n g On = ( u n - l / 2 + u n + l / 2 ) / 2 , eqn. (3.32) may 

be s o l v e d , y i e l d i n g : 

u " + l / 2 = (MMt-C/2)-1[MMt-C/2)un - 1 / 2+Rn-P(un)] (3.33) 

The new d i s p l a c e m e n t s un + 1 are t hen found f r o m eqn. (3 .31a) . I f t h e 

system has no damping (C = 0) and the mass m a t r i x M i s d i agona l , eqns. 

(3.33) become uncoupled: 

•n+l/2= - n - l / 2 + M - l [ R n _ p ( u % t (3.34) 

These eqns. can t h e n be s o l v e d i n d e p e n d e n t l y f o r each degree of 

freedom I : 

• n + l / 2 = G n - l / 2 + A ( R n _ p n ) / l t ) i ( 3 > 3 5 ) 

The equat ions a lso become uncoupled i f the damping i s assumed t o 

be of the Rayleigh t ype , as shown in sec t i on 4.6. 

This uncoup l ing of the equat ions of motion i s the major advantage 

of e x p l i c i t i n t e g r a t i o n procedures. No mass or s t i f f n e s s mat r i ces need 

be i n v e r t e d or even assembled, as a l l the incrementa l c a l c u l a t i o n s f o r 

each degree of freedom can be done independent ly at the loca l l e v e l . 

This not only a l l ows f o r a s imp le r a r c h i t e c t u r e in computer codes, but 

i t enab les t h e t r e a t m e n t of n o n - l i n e a r i t i e s (be i t o f C o n s t i t u t i v e , 

Geomet r i c or Boundary t y p e ) w i t h v i r t u a l l y no added c o s t f r o m t h e 

l i n e a r case . The number o f o p e r a t i o n s per t i m e - s t e p i s much s m a l l e r 

than f o r i m p l i c i t methods ( s e c t i o n 3 .6 .2 ) , and s t o r a g e r e q u i r e m e n t s 

grow only l i n e a r l y w i t h the s ize of the problem. 

The main d i s a d v a n t a g e of t h e c e n t r a l d i f f e r e n c e and o t h e r 

e x p l i c i t methods i s t h a t computa t ions a re o n l y c o n d i t i o n a l l y s t a b l e 

depending on the t i m e - s t e p s i ze . The t i m e - s t e p must be sma l l e r than a 

c e r t a i n c r i t i c a l v a l u e f o r n u m e r i c a l e r r o r s no t t o grow unbounded. 

Th i s c o n s t i t u t e s a ma jo r o b s t a c l e f o r c e r t a i n p rob l ems where an 

excessive number of t ime-s teps makes the ana l ys i s too c o s t l y . 

The s t a b i l i t y of the c e n t r a l d i f f e r e n c e method i s considered in 

s e c t i o n 4.7. The t i m e - s t e p i s l i m i t e d by t h e Couran t c r i t e r i o n , i . e . 
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the time i t takes the stress waves to t ravel across one element. This 

l i m i t a t i o n is consistent wi th the l oca l , uncoupled in tegrat ion of the 

equat ions of mot ion. I f the t i m e - s t e p was l a rge r than the Courant 

c r i t i c a l value, stress waves would t ravel across an element w i th in one 

t i m e - s t e p , a f f e c t i n g the surrounding e lements. The incrementa l 

behaviour of that element would no longer be independent from the rest 

of the model. 

Centra l d i f f e r e n c e schemes have been w ide l y used in non l inear 

numerical codes, from the ea r l y FD hydrocodes of Wi1kins(1964) and 

Maenchen and Sack(1964), to the FE codes of Hal lquist (1982a, 1982c), 

Key (1974), and Belytschko and Tsay(1982). The accuracy and 

s t a b i l i t y of central di f ference methods has been studied and discussed 

by var ious authors (e.g. Be ly tschko, Holmes and Mul len (1975), 

Belytschko(1978), Krieg and Key(1973)). The central di f ference method 

is considered as the most convenient w i th in the e x p l i c i t class. 

3.6.2. TRAPEZOIDAL RULE (IMPLICIT) 

The s o - c a l l e d t r apezo ida l ru le i s an example of i m p l i c i t 

in tegrat ion methods. In fact i t const i tutes a par t i cu la r case of the 

Newmark fami ly , probably the most popular of the i m p l i c i t schemes. A 

constant average a c c e l e r a t i o n is assumed f o r each increment At. The 

difference equations are: 

u n + h = ( i in + u n + 1 )/2 (0 s< h < 1) 

u n + 1 = un+ ( i in + i i n + 1 )At/Z (3.36) 
u n+l = u n + a n 4 t + ( .jjn + yn+1 ) A t 2 / 4 

For obtaining un+l the equations of motion are enforced for time 

t+At. In an undamped case, 

Miin+1+ P(un + 1) = Rn+1 (3.37) 

Eqn. (3.37) i s an i m p l i c i t r e l a t i o n f o r u n + l . S u b s t i t u t i n g the 

d i f f e r e n c e expressions (3.36) in (3.37) the f o l l o w i n g system is 

obtained: 
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L ( 4 M t 2 ) M + K n + 1 j u n + 1 = Rn + 1 + M [ 4 M t 2 ) u n + ( 4 M t ) u n + i i n J (3.38) 

where Kn+1 i s the secant s t i f f n e s s ma t r i x ( pn+l= Kn+lun+1). 

For a l i n e a r system (Kn = cons tan t ) eqns. (3.38) may be solved by 

i n v e r t i n g t h e m o d i f i e d s t i f f n e s s m a t r i x K*, d e f i n e d as 

K* = ( 4 / 4 t ^ M + K n + 1 (3.39) 

For n o n l i n e a r sys tems t h e e q u a t i o n s a re g e n e r a l l y s o l v e d by 

d i r e c t e l i m i n a t i o n techn iques , e.g. Newton-Raphson type methods (which 

requ i re t r i a n g u l a r i z a t i o n of K*). 

The t r a p e z o i d a l r u l e i s u n c o n d i t i o n a l l y s t a b l e (see e.g. 

Belytschko and Schoeberle, 1975), the t i m e - s t e p being l i m i t e d only by 

accuracy c o n s i d e r a t i o n s . Th i s i s t h e main advan tage of i m p l i c i t 

schemes, which makes them more appropr ia te f o r problems in which la rge 

t ime-s teps can be used. I f the t ime -s teps are l i m i t e d to smal l values 

f o r reasons other than s t a b i l i t y (e.g. steep n o n l i n e a r i t i e s , accuracy, 

s t ress-waves) i m p l i c i t methods lose t h e i r advantage. 

Another l i m i t a t i o n i s the la rge s torage requ i red f o r the m a t r i x 

c o e f f i c i e n t s , which r e s t r i c t s severe ly the s ize of problem tha t can be 

s o l v e d i n - c o r e . L a r g e r models and 3-D a n a l y s e s must o f t e n r e s o r t t o 

o u t - o f - c o r e storage w i t h f requent and slow disk I/O. Because of t h i s 

problem, a l t e r n a t i v e equat ion s o l v i n g methods based on i t e r a t i v e or 

r e l a x a t i o n procedures are becoming popular . C lass i ca l methods of t h i s 

t y p e are t h e Jacob i and Gauss -Se ide l p r o c e d u r e s , a l t h o u g h t h e i r 

e f f ec t i veness f o r f i n i t e Element codes i s l i m i t e d (Be ly tschko, 1983). 

More p r o m i s i n g f o r FE t o p o l o g i e s are c o n j u g a t e g r a d i e n t and q u a s i -

Newton methods. A new and seduct ive Element-by-Element equat ion so lve r 

has been proposed l a t e l y by Hughes, L e v i t and Winget (1983b) ; 

b a s i c a l l y i t c o n s i s t s of an o p e r a t o r - s p l i t t i n g method t h a t t akes 

advantage of the FE data s t r u c t u r e (see a l s o s e c t . 3 .6 .3) . 

I m p l i c i t methods are l e s s r e l i a b l e as t o c o m p l e t i n g t h e 

c o m p u t a t i o n s w i t h o u t c r a s h i n g and w i t h t h e r e q u i s i t e a c c u r a c y t han 

e x p l i c i t methods (Be ly tschko , 1983). 
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N o n l i n e a r models are g e n e r a l l y more d i f f i c u l t w i t h i m p l i c i t 

schemes. F i r s t l y l i e s t h e i n c r e a s e d c o s t of t h e Newton-Raphson 

i t e r a t i o n s . Then i s t h e f a c t t h a t a l l b o u n d a r y c o n d i t i o n s , 

n o n l i n e a r i t i e s , e t c . must be i n c l u d e d i m p l i c i t l y i n t h e secan t 

s t i f f n e s s m a t r i x (K* i n eqn. ( 3 .39 ) ) . Th i s g r e a t l y c o m p l i c a t e s t h e 

f o r m u l a t i o n and may r e s t r i c t t h e range o f c o n s t i t u t i v e models and 

boundary c o n d i t i o n s t h a t may be used. 

3 .6 .3 OPERATOR SPLIT METHODS 

From the d iscuss ion in sec t ions 3.6.1 and 3.6.2, i t i s c l ea r t h a t 

an operator combining the advantages o f e x p l i c i t methods (uncoup led 

equat ions , s imple program a r c h i t e c t u r e , no s torage of g loba l m a t r i x ) 

w i t h t h e u n c o n d i t i o n a l s t a b i l i t y of i m p l i c i t methods w o u l d be ve ry 

d e s i r a b l e . O p e r a t o r s p l i t m e t h o d s a t t e m p t t o c o m b i n e such 

c h a r a c t e r i s t i c s . 

An u n c o n d i t i o n a l l y s t a b l e e x p l i c i t p r o c e d u r e was p roposed by 

T r u j i l l o (1972) and r e c e i v e d v a r i o u s e x t e n s i o n s by Park (1982) . T h i s 

c o n s i s t s i n s p l i t t i n g t h e s t i f f n e s s K i n t o upper and l o w e r m a t r i c e s 

and p e r f o r m i n g t w o passes i n a l t e r n a t e d i r e c t i o n s , each pass 

corresponding to h a l f a t i m e - s t e p . Al though t h i s procedure appears to 

work w e l l f o r heat c o n d u c t i o n ( T r u j i l l o , 1975) , f o r s t r u c t u r a l 

dynamics the accuracy i s poor (Mul len and Be ly tschko , 1983). 

A p r o m i s i n g avenue i s t h e use o f E l e m e n t - b y - E l e m e n t me thods , 

w h i c h p e r f o r m a f a c t o r i z a t i o n t a k i n g advan tage of t h e FE da ta 

s t r u c t u r e . Such an a l g o r i t h m has been p roposed f o r s o l i d and 

s t r u c t u r a l mechanics by O r t i z , P insky and T a y l o r (1983) . In i t s 

o r i g i n a l f o r m t h i s method was p roposed by Hughes, L e v i t and Winget 

( 1 9 8 3 a ) f o r h e a t c o n d u c t i o n . The same a u t h o r s (1983b) r e p o r t 

u n s a t i s f a c t o r y accu racy i n s t r u c t u r a l d y n a m i c s , and sugges t t h i s 

t e c h n i q u e be used i n s t e a d as a l i n e a r e q u a t i o n s o l v e r w i t h i n an 

i m p l i c i t scheme. The approach of O r t i z e t a l (1983) uses v e l o c i t i e s 

and s t r e s s e s as unknowns. They p e r f o r m t w o passes i n a l t e r n a t i n g 

d i r e c t i o n s w i t h i n a t r apezo ida l r u l e to ob ta in second order accuracy. 

A quest ion mark s t i l l hangs over the accuracy of these methods. 
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3.7 PRACTICAL CONSIDERATIONS FOR DISCRETE MESHES 

A number of undes i rab le e f f e c t s can be generated by the nature of 

the s p a t i a l s e m i d i s c r e t i z a t i o n . Unacceptable s o l u t i o n s may be produced 

by F i n i t e E lement meshes even i f t h e e l e m e n t s s a t i s f y t h e s t a n d a r d 

convergence c r i t e r i a (e .g . Zi enk i e w i c z , 1977, c h p t s . Z&3). Two 

p r o b l e m s , r e l a t e d t o t h e degree of v o l u m e t r i c c o n s t r a i n t , a re 

discussed below. "Locking up" o c c u r s f o r e x c e s s i v e c o n s t r a i n t . w h i 1 e 

"hourg lass ing" modes appear i f v o l u m e t r i c c o n s t r a i n t s are too re laxed . 

Ano the r p r o b l e m no t d i s c u s s e d h e r e , bu t t o w h i c h r e f e r e n c e i s 

made i n o t h e r s e c t i o n s (4 .2 .3 , 7.4.4) i s t h e e x c e s s i v e d i s t o r t i o n i n 

Lagrangian meshes f o r models w i t h very l a rge de fo rma t i ons , which may 

cause t a n g l i n g over of the mesh. 

3 .7 .1 "LOCKING-UP" FOR INCOMPRESSIBLE FLOW 

Some meshes ( i n p a r t i c u l a r c o n s t a n t s t r a i n t r i a n g l e s and 

t e t r ahed ra ) g ive o v e r s t i f f s o l u t i o n s f o r i ncompress ib le p l a s t i c f l o w . 

Al though t h i s i s a we l l known f a c t , some authors have cont inued to use 

them f o r c o n v e n i e n c e (e .g . Johnson , 1976, 1977) . The v a l i d i t y o f 

such p r a c t i c e has been s t r o n g l y q u e s t i o n e d ( H a l l q u i s t , Werne and 

W i l k i n s , 1977). 

The reason f o r " l o c k i n g - u p " was shown i n a c l a s s i c a l paper by 

N a g t e g a a l , Parks and R ice (1974) t o be an e x c e s s i v e number of 

v o l u m e t r i c i n c o m p r e s s i b i 1 i t y c o n s t r a i n t s i n t h e d i s c r e t e meshes. 

According t o Nagtegaal , the number of vo l ume t r i c c o n s t r a i n t s must not 

exceed t h e number o f Degrees Of Freedom (DOF) o f t h e mode l . I d e a l l y 

the degree of c o n s t r a i n t should be the same as i n the cont inuum, w i t h 

one incompressi bi 1 i t y equat ion per ma te r i a l po in t (v^ -j=(j). Thus the 

idea l r a t i o DOF/const ra in ts equals 2 f o r plane s t r a i n or ax isymmetr ic 

a n a l y s e s , and 3 f o r t h r e e - d i m e n s i o n a l mode l s . For c o n v e r g e n c e , t he 

r a t i o DOF/const ra in ts should tend to a value g rea te r than 1 when the 

mesh i s i n f i n i t e l y r e f i n e d . Nagtegaa l e t al (1974) s t u d i e d a few 

commonly used elements and found some of them to be u n s u i t a b l e . Some 

of t h e i r r e s u l t s are presented in t a b l e 3.1. 
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Mixed Tr iang les-Quad. 

(MTQ.MTQC) 

A 

/ 

t 

y • 

AXISYMMETRIC 

Constant S t r a i n T r i ang le A 

(CST) (exact hoop s t r a i n ) 

Constant S t r a i n T r i ang le A 

(CST) (reduced hoop s t r . ) *•—* 

Mixed Tr iang les-Quad. 

(MTQ.MTQC) w i t h reducec j 

hoop s t r a i n s -~ 

3-DIMENSIONAL 

Constant S t r a i n T e t r a h . 

(CST),5 per b r i c k , 

regular l a t t i c e 

Constant S t r a i n T e t r a h . 

(CST),6 per b r i c k , 

regu la r l a t t i c e 

8-node isoparametr ic ' 

b r i c k 

Mixed T e t r a h . - B r i c k 

(MTB.MTBC) 

5 or 6 T e t r a h . / B r i c k t 

A 
A 

. _» 
" C 3 

t 
1 
I »-

1-" 
- ^ 

' / i V 

' ' 1 

Cons t ra in t s 
Element 

1 

3 

1 

3 

1 

1 

1 

1 

7 

1 

Nodes 
Element 

1/2 

1 

1 

1/2 

1/2 

1 

1/5 

1/6 

1 

1 

DOF 
Constra i nt 

1 

2/3 

2 

1/3 

1 

2 

3/5 

3/6 

3/7 

3 

Table 3 . 1 : R a t i o s o f D e g r e e s o f F reedom t o i n c o m p r e s s i b i l i t y 

c o n s t r a i n t s , f o r i n f i n i t e l y r e f i n e d 2 and 3-D meshes. 
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To achieve convergence, the number of volumetric constraints must 

be re laxed. For t h i s , Nagtegaal et al (1974) proposed a mod i f i ed 

var iat ional method which essent ia l ly consists of performing a reduced 

i n t e g r a t i o n on the vo lume t r i c s t resses . This can be app l ied only to 

elements in which f u l l numerical in tegrat ion comprises more than one 

quadrature point. A one-point volumetric in tegrat ion is proposed for 

4-node q u a d r i l a t e r a l s and 8-node b r i c k s . This method is c a l l e d 

"select ive" in tegra t ion , and the elements produced possess the desired 

number of constra ints . In prac t ice , reduced in tegrat ion is 

o f ten extended f o r convenience t o t he d e v i a t o r i c s t r e s s e s as 

wel 1 (Hal 1 quist,1982b). This excessive relaxat ion may create addit ional 

problems ("Hourglassing") which must be treated appropriately (section 

3.7.2). In a F i n i t e D i f f e rence contex t the equ iva len t to one-po in t 

reduced i n t e g r a t i o n i s obta ined by us ing contour i n t e g r a l formulae 

( W i l k i n s , 1964). 

An a l te rnat ive so lu t ion , s ta r t ing of f from the simplest t r iang les 

and tetrahedra, is to group several elements together and average the 

vo lume t r i c s t r a i n s between them. Such a s o l u t i o n is the "Mixed 

D iscre t iza t ion" (MD) procedure proposed by Mar t i and Cundall (1982). 

This refers the deviator ic stra ins to the basic t r iangles/ te t rahedra 

and averages the vo lume t r i c components w i t h i n one q u a d r i l a t e r a l (2 

t r i a n g l e s ) or one b r i c k (5/6 t e t r ahed ra ) (sec t ion 4.2.2). This 

technique has been employed for the present work. The resul t of th i s 

MD may be interpreted as new, larger elements, which w i l l be termed in 

the f o l l o w i n g MTQ (Mixed T r i a n g l e s - Q u a d r i l a t e r a l ) and MTB (Mixed 

T e t r a h e d r a - S r i c k ) . These e lemen ts have the des i red number of 

constraints ( tab le 3.1). 

Johnson (1981) has also used a volumetric averaging procedure for 

3-D s im i l a r to the proposed MD. For 2-D Johnson (1981) employs meshes 

of crossed t r iang les , which were shown by Nagtegaal et al (1974) to be 

less s t i f f than o rd inary t r i a n g l e l ayou ts . The behaviour of these 

crossed layouts is not as good as tha t of MD, however (see sec t ion 

5.7). 
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3.7 .2 "HOURGLASSING" 

Some commonly used meshes a d m i t c e r t a i n unopposed de fo rmat ion 

modes. These are c a l l e d "zero-energy" or "hou rg lass ing " modes, because 

of t h e s i m i l i t u d e w i t h an h o u r g l a s s p a t t e r n . I f not d e a l t w i t h , 

hourg lass ing modes q u i c k l y grow and dominate the s o l u t i o n . Examples of 

such meshes are q u a d r i l a t e r a l s or b r i c k s , w i t h one-po in t quadrature in 

FE, or c o n t o u r i n t e g r a l f o r m u l a e i n FO. In bo th cases H o u r g l a s s i n g 

appears as t h e p r i c e f o r an e x c e s s i v e r e d u c t i o n i n t h e s t r e s s 

i n t e g r a t i o n . However, an t i -hourg l a s s i n g t r e a t m e n t s do e x i s t and may 

s o m e t i m e s be p r e f e r r a b l e t o t h e e x c e s s i v e c o s t of s e l e c t i v e 

i n t e g r a t i o n (Goudreau and H a l l q u i s t , 1982). 

The f i r s t a n t i - h o u r g l a s s i n g s o l u t i o n s were r e p o r t e d i n t h e FO 

hydrocodes (Maenchen and Sack, 1964) , c o n s i s t i n g o f a r t i f i c i a l 

v i s c o s i t y te rms. A s i m i l a r procedure in 3-D has been used by W i l k i n s 

e t a l . (1975) . These t e c h n i q u e s i n v o l v e c o n s i d e r a b l e c o m p u t a t i o n and 

are no t c o m p l e t e l y i ndependen t o f r i g i d body modes. A more r i g o r o u s 

t rea tmen t of hourg lass ing has been f o l l o w e d by Flanagan and Bely tschko 

(1981b) , who pursue t h e i dea o f t h e o r t h o g o n a l i t y of h o u r g l a s s i n g 

modes to the f i r s t - o r d e r modes, f i r s t proposed by K o s l o f f and F raz ie r 

(1978). Flanagan and Bely tschko use an a d d i t i o n a l c o n t r i b u t i o n to the 

s t i f f n e s s m a t r i x , c a l l e d s t a b i l i z a t i o n m a t r i x . 

From a more p r a c t i c a l v i e w p o i n t Goudreau and H a l l q u i s t (1982) 

have c o n s i d e r e d F lanagan and B e l y t s c h k o ' s a l g o r i t h m s t o i n v o l v e an 

e x c e s s i v e c o m p u t a t i o n a l c o s t . F u r t h e r m o r e , exac t t r e a t m e n t of 

hourg lass ing i s not necessary, as hourg lass ing modes are g lobal modes, 

and element hourg lass ing i s o f ten a s tab le k inemat i c component of a 

g lobal energy mode. In the DYNA codes H a l l q u i s t (1982b) uses an a n t i -

h o u r g l a s s i n g v i s c o s i t y based on F l a n a g a n ' s o r t h o g o n a l modes, 

s i m p l i f i e d t o produce an opera t ion count 4 t o 5 t imes lower . 

Reduced s e l e c t i v e i n t e g r a t i o n or "M ixed D i s c r e t i z a t i o n " r e s i s t 

t he h o u r g l a s s i n g modes " n a t u r a l l y " w i t h d e v i a t o r i c s t r e s s e s , b y ­

passing the need f o r any spec ia l t r e a t m e n t . A quest ion mark i s put by 

Goudreau and H a l l q u i s t (1982) on w h e t h e r t h e added c o s t o f t hese 

techniques i s w o r t h w h i l e in terms of improved accuracy. A d d i t i o n a l l y , 

f o r some a p p l i c a t i o n s l i k e h igh-p ressure shock waves where s t reng th i s 
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not a f a c t o r , d e v i a t o r i c s t resses may not be able to r e s t r a i n 

hourglassing. 

3.8 CONCLUSIONS 

Fin i te Difference and F in i te Element methods provide a l te rnat ive 

solut ions for spat ia l semid iscre t iza t ion, w i th t he i r own independent 

schools and l i t e r a t u r e . However, recent t rends in F i n i t e Elements 

avoid the assemblage of g lobal c o e f f i c i e n t mat r ices (e.g. e x p l i c i t 

methods or i m p l i c i t methods wi th relaxat ion techniques for equation 

s o l v i n g ) . In these cases FE and FD approaches are concep tua l l y very 

s im i la r . 

Lagrangian, Eu le r ian or ALE techniques prov ide a l t e r n a t i v e 

desc r i p t i ons f o r the mesh, each of them w i t h po in ts in favour and 

a g a i n s t . Lag rang ian meshes are g e n e r a l l y p re fe r red f o r s o l i d 

mechanics. Various non l inear f o rmu la t i ons are presented, each best 

suited to a d i f fe ren t class of problems. Total Lagrangian formulat ions 

are advantageous for hyperelast ic-type materials (behaviour described 

on the or ig ina l conf igurat ion) , whi le Cauchy stress formulat ions are 

preferrable for hypoelastic and p l a s t i c m a t e r i a l s (descr ibed on the 

current conf igurat ion) . Equivalent algorithms for a given material may 

genera l l y be found in both f o r m u l a t i o n s , a l b e i t at the expense of 

cost ly transformations between current and or ig ina l conf igurat ions. 

For time in teg ra t ion , the choice is between i m p l i c i t and e x p l i c i t 

schemes. Both possess very d i f fe ren t charac ter is t i cs as to s t a b i l i t y , 

code archi tecture and storage requ i rements . E x p l i c i t techniques are 

well suited for problems dominated by high frequency components (wave 

propagation), or which are steeply non- l inear, and of short durat ion. 

I m p l i c i t techniques are to be preferred for inert ia-dominated models 

( low f r e q u e n c i e s ) , l e s s n o n - l i n e a r , or of l o n g e r d u r a t i o n . 

The d i rec t e l iminat ion techniques used generally for equation solving 

in i m p l i c i t methods severe ly l i m i t the s ize of problems t h a t can be 

modelled, specia l ly in 3-D. 

The new El ement-By-Element techniques proposed recen t l y are 

promis ing a l t e r n a t i v e s . They appear to be most use fu l as l i n e a r 
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equat ion so lvers w i t h i n i m p l i c i t methods. As uncondi t ional ly stable 

exp l i c i t time operators, accuracy problems s t i l l need to be overcome 

before they are used in production codes. 

F ina l l y , " locking-up" and "hourglassing" are important pract ica l 

problems related to the spat ial semid iscre t iza t ion , requir ing special 

a t ten t ion ; i f not provided fo r , convergence may not occur in otherwise 

t h e o r e t i c a l l y "sound" meshes. The method of tack l ing these problems 

often condit ions strongly the overal l approach of the numerical model. 
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4 .1 INTRODUCTION 

Numer i ca l F i n i t e D i f f e r e n c e (FD) t e c h n i q u e s f o r t h e n o n l i n e a r 

ana lys i s of 2 and 3-Dimensional e l a s t i c - p l a s t i c cont inua are descr ibed 

h e r e . E x p l i c i t c e n t r a l d i f f e r e n c e i n t e r p o l a t i o n s are used bo th i n 

space and t i m e d o m a i n s , w i t h t r i a n g u 1 a r / t e t r a h e d r a l c e l l s f o r t h e 

s p a t i a l s e m i d i s c r e t i z a t i o n . No r e s t r i c t i o n s are placed on the topology 

of t h e mesh, w h i c h i n t h i s aspec t i s i d e n t i c a l t o t h o s e of F i n i t e 

Element methods. 

The method o u t l i n e d i s a general purpose one and may be app l ied 

to both l i n e a r and non l i nea r , t ime-march ing thermomechanical ana lys i s 

of con t i nua ; however, i t w i l l be most advantageous f o r shor t du ra t i on 

h igh l y non l inear problems, such as a r i s e from impact . A great freedom 

i s a v a i l a b l e f o r imp lementa t ion of ma te r i a l c o n s t i t u t i v e laws. For the 

present work (mainly in non -cyc l i c load ing of meta ls) m a t e r i a l laws 

have been r e s t r i c t e d t o el a s t i c - p i a s t i c Von Mises models w i t h 

k i n e m a t i c - i s o t r o p i c hardening. 

M a t e r i a l damping i s i n c l u d e d , p e r m i t t i n g t h e use of dynamic 

r e l a x a t i o n f o r q u a s i - s t a t i c p rob lems. A n u m e r i c a l c o n t a c t a l g o r i t h m 

models t he i n t e r f a c e between c o n t i n u a , o f t e n p r e s e n t i n n o n l i n e a r 

impact c a l c u l a t i o n s . F i n a l l y , f o r g e n e r a l i t y , thermal e f f e c t s a l l o w i n g 

heat genera t ion /conduc t ion and ma te r i a l dependence on temperature have 

been i nc l uded , enab l ing a f u l l y coupled thermomechanical a n a l y s i s . 

The t h e o r y and n u m e r i c a l t e c h n i q u e s d e s c r i b e d be low a p p l y i n 

general f o r 2 and 3-D models. A 2-D code w i t h ax isymmet r ic c a p a b i l i t y 

was developed f o r t h i s t h e s i s , imp lement ing the a l g o r i t h m s descr ibed. 

In genera l , imp lementa t ion d e t a i l s f o r the a l go r i t hms are given only 

f o r 2-D. Some a l g o r i t h m s (e.g. thermal e f f e c t s , p reven t ion of negat ive 

volumes) have a lso been implemented by the author in an e x i s t i n g 3-D 

program ( M a r t i ( 1 9 8 1 , 1 9 8 3 ) ) , ( M a r t i , G o i c o l e a , K a l s i , and Macey 

(1984 ) ) , ( M a r t i , K a l s i , and Las t (1984 ) ) . 

4.1.1 GENERAL METHODOLOGY 

Before entering into details of the numerical techniques, it is 
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u s e f u l t o d e s c r i b e t h e p h i l o s o p h y o f t i m e - m a r c h i n g e x p l i c i t 

c a l c u l a t i o n s . These prov ide a set of uncoupled d i s c r e t e equat ions of 

mo t ion , which may be solved e x p l i c i t l y w i t hou t assembl ing or i n v e r t i n g 

g lobal s t i f f n e s s or mass ma t r i ces . The program a r q u i t e c t u r e i s q u i t e 

d i f f e r e n t from the usual l i n e a r ( s t a t i c or dynamic) or i m p l i c i t non­

l i n e a r techn iques , a l l o w i n g a g rea ter g e n e r a l i t y i n the t rea tment of 

nonl i n e a r i t i e s ( la rge de fo rma t ions , ma te r i a l behaviour , con tac ts ) . 

I t i s assumed t h a t the f u n c t i o n a l dependence of the d isplacements 

on space and t i m e can be s e p a r a t e d , g i v i n g r i s e t o i ndependen t 

semi d i s c r e t i z a t i o n s f o r bo th doma ins . The mesh f o r t h e s p a t i a l 

s e m i d i s c r e t i z a t i on i s L a g r a n g i a n ( s e c t . 3 .4 .1 ) , i . e . t h e g r i d nodes 

r e p r e s e n t m a t e r i a l p o i n t s and move w i t h t hem. The t i m e domain i s 

d i v ided l i n e a r l y i n t o t i m e - s t e p s . 

The computat ional cyc le performed to advance the problem in t i m e 

may be d e s c r i b e d as f o l l o w s ( f i g . 4 .12) . At a p a r t i c u l a r i n s t a n t , 

c o o r d i n a t e s , v e l o c i t i e s and acce le ra t i ons are known. The acce le ra t i ons 

are i n t e g r a t e d w i t h a c e n t r a l d i f f e r e n c e scheme f o r each g r i d - p o i n t , 

t o f i n d the new v e l o c i t i e s and d isp lacements . These are then used in 

s p a t i a l d i f f e r e n c e equat ions to i n t e r p o l a t e the de format ion g rad ien ts 

and s t r a i n s f o r each c e l l . A p p l y i n g t h e m a t e r i a l c o n s t i t u t i v e 

e q u a t i o n s , s t r a i n s g i v e r i s e t o s t r e s s e s , w h i c h are then i n t e g r a t e d 

around each g r i d - p o i n t t o prov ide nodal f o r ces . D i v i d i n g by the mass 

( lumped at nodes) t h e new a c c e l e r a t i o n s may be f o u n d . Here t h e 

computat ional cyc le i s complete and may be recommenced f o r the next 

t i m e - s t e p . This process cont inues u n t i l the t o t a l t ime f o r ana lys is is 

reached. Nonl inear boundary c o n s t r a i n t s g i v i n g r i s e to d isplacement or 

fo rce cond i t i ons are in t roduced i n t o the cyc l e e x p l i c i t l y . 

For the thermal ana lys i s the computat ions advance in p a r a l l e l and 

c o u p l e d w i t h t h e mechan ica l c y c l e . I n f l u x o f heat i n t o a c e l l f r o m 

heat sources, heat conduc t ion , or produced by p l a s t i c work, gives r i s e 

t o t e m p e r a t u r e i n c r e m e n t s . The g r a d i e n t s of t h e new t e m p e r a t u r e s 

c r e a t e heat f l u x e s ( c a l c u l a t e d f r o m F o u r i e r ' s c o n d u c t i o n l a w ) , 

a l l o w i n g r e p e t i t i o n of the cyc le f o r the next t i m e - s t e p . 

A p r i c e i s p a i d f o r t h e g e n e r a l i t y and s i m p l i c i t y of e x p l i c i t 

a l g o r i t h m s , in t h a t the compu ta t i ons a re o n l y c o n d i t i o n a l l y s t a b l e , 
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l i m i t i n g t he s i z e of t h e t i m e - s t e p t o s m a l l v a l u e s . However , t he 

o p e r a t i o n coun t per t i m e - s t e p i s much s m a l l e r t han f o r i m p l i c i t 

methods. The c r i t i c a l t i m e - s t e p may be es t ima ted a c c u r a t e l y , and the 

r o b u s t n e s s of t h e c o m p u t a t i o n s does not s u f f e r as a r e s u l t of t h e 

c o n d i t i o n a l s t a b i l i t y . The main i m p l i c a t i o n of t h e t i m e - s t e p 

r e s t r i c t i o n i s the la rge number of computat iona l cyc les necessary f o r 

medium or long du ra t i on analyses, which o f ten become uneconomical . 

In e x p l i c i t c a l c u l a t i o n s , t h e l i m i t i n g f a c t o r i s g e n e r a l l y t h e 

CPU t i m e , r a t h e r t han c o r e s t o r a g e . When c o n s t r u c t i n g the mesh, i t 

must be taken i n t o c o n s i d e r a t i o n t h a t the t i m e - s t e p i s p ropo r t i ona l t o 

the minimum element s i ze . A loca l re f inement of the mesh, even i f i t 

only adds a smal l number of e lements , may increase g r e a t l y the number 

of t ime -s teps necessary and hence the computat iona l cos t . 

Quasi-stat ic models 

By t h e i r na tu re , e x p l i c i t computat ions are e s s e n t i a l l y dynamic, 

r e l y i n g on numerical i n t e g r a t i o n of the equat ions of motion w i t h non­

zero masses f o r the t ime-march ing s o l u t i o n . No s i m p l i f i c a t i o n of the 

c y c l e i s p o s s i b l e f o r q u a s i - s t a t i c a n a l y s i s . However , many such 

problems can s t i l l be solved advantageously, us ing dynamic r e l a x a t i o n 

(damping out v i b r a t i o n s u n t i l a s t eady -s ta te i s reached), or v e l o c i t y 

sca l i ng ( i nc reas ing de fo rmat ion v e l o c i t y in a c o n t r o l l e d manner). 

Dynamic r e l a x a t i o n may be argued t o be a more n a t u r a l approach 

than the s t a t i c s t i f f n e s s equat ions (3.12), (3.13). As in the phys ica l 

w o r l d , w i t h dynamic r e l a x a t i o n s t a t i c e q u i l i b r i u m i s reached as a 

l i m i t i n g s t e a d y - s t a t e . In g e n e r a l , s o l u t i o n w i l l r e q u i r e a g r e a t e r 

computa t iona l e f f o r t , a l though i f adap ta t i ve techniques are used fo r 

mass and damping parameters (Underwood, 1983), the d i f f e r e n c e may be 

s m a l l . One d e f i n i t e advantage e x p l i c i t r e l a x a t i o n methods have, which 

may be overwhelming in la rge 3-D systems, i s t ha t they do not need to 

s to re any l a rge g lobal c o e f f i c i e n t ma t r i ces . For n o n - l i n e a r problems, 

dynamic r e l a x a t i o n r e q u i r e s some c a r e so as not t o a p p l y t o o l a r g e 

l o a d - s t e p s w h i c h w o u l d cause an i r r e v e r s i b l e o v e r s h o o t i n t h e 

s o l u t i o n . A d d i t i o n a l l y , i f the loads are app l i ed g r a d u a l l y , the amount 

of r e l a x a t i o n needed a f t e r r e a c h i n g t h e maximum l o a d i s g r e a t l y 

reduced. 
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Ve loc i t y sca l i ng e x p l o i t s the f a c t t ha t f o r s u f f i c i e n t l y slow 

loading, the relaxat ion process may be ommitted al together, without 

excessive errors. This allows modelling a slow, quas i -s ta t ic process 

merely by c o n t r a c t i n g the t i m e - s c a l e . As in dynamic r e l a x a t i o n , 

load ing must be slow enough not to cause overshoots. The e r ro r s 

incurred in th is process are in the form of e las t i c stress waves l e f t 

t r a v e l l i n g in the model. For e las t ic analyses, ve loc i ty scal ing w i l l 

not be appropriate in general, as the in tens i ty of these waves w i l l be 

important wi th respect to the overal l stresses. For p last ic analyses 

however, the e r r o r w i l l merely be in the form of an e l a s t i c "no ise" 

superposed on the smoother q u a s i - s t a t i c solut ion (see also sections 

6 . 5 . 1 , 7 .3 .2 .2) . 

4.2 SPATIAL SEMIDISCRETIZATION 

A discrete mesh of t r iangles (2-D) or tetrahedra (3-D) is a f f i xed 

on the i n i t i a l ( re ference) c o n f i g u r a t i o n of the cont inuum, and 

p a r t i c l e s are f o l l o w e d through t ime (Lagrangian mesh). The cu r ren t 

conf igurat ion is a funct ion of the reference conf igurat ion and t ime: 

x = x (X, t ) (4.1) 

Displacements (u = x-X), ve loc i t ies (v=u) and accelerations (a=ii) are 

defined at the nodes. Deformation gradients F, rates of deformation d, 

s t r a i n s E, and s t resses crare r e f e r r e d to the c e n t r o i d of each c e l l 

( f i g . 4.1). 

The computat ions re l a ted to the d i s c r e t i z a t i o n f a l l i n t o two 

areas: f i r s t l y the in terpo la t ion of st ra ins and deformation gradients 

from the nodal displacements, and secondly the in tegrat ion of stresses 

around each gr id-po in t to obtain the nodal forces. 

Triangles and Tetrahedra are the only element types which provide 

a one-to-one c o r r e l a t i o n between the sets of a l l poss ib le corner 

movements and deformat ion g rad ien t tenso rs . This f a c t i n h e r e n t l y 

el iminates zero-energy ("hourglassing") de format ion modes (unopposed 

movements of the corner nodes), which occur for other elements such as 
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q u a d r i l a t e r a l s or b r i c k s w i t h reduced i n t e g r a t i o n . I t a l s o a l l o w s a 

d i r e c t o b t e n t i o n of t h e g r a d i e n t s f r o m t h e d i f f e r e n c e e q u a t i o n s 

w i thou t us ing contour i n t e g r a l s (eqn. 3.4) 

However, meshes of constant s t r a i n t r i a n g l e s or t e t r ahed ra o f ten 

" l ock -up" when mode l l i ng p l a s t i c f l o w , g i v i n g s o l u t i o n s which are very 

o v e r s t i f f (see sect . 3.7.1). The Mixed D i s c r e t i z a t i o n (MO) procedures 

p roposed by M a r t i and Cunda l l (1982) a re employed here t o overcome 

t h i s problem. The new elements c rea ted by Mixed D i s c r e t i z a t i o n w i l l be 

c a l l e d MTQ (Mixed T r i a n g l e s - Q u a d r i l a t e r a l ) and MTB (Mixed Te t rahedra-

B r i c k ) . 

M i x e d D i s c r e t i z a t i o n i s a t t r a c t i v e f o r e l a s t i c - p l a s t i c 

c a l c u l a t i o n s because i t a l l ows the use of s imple e lements , which avoid 

z e r o - e n e r g y modes n a t u r a l l y , w i t h o u t t he need f o r a r t i f i c i a l a n t i -

h o u r g l a s s i n g t e rms (see s e c t . 3 .7.2) . However , i t e l i m i n a t e s an 

advantage of t r i a n g u l a r / t e t r a h e d r a l meshes, i .e . the i m p o s s i b i l i t y of 

t a n g l i n g over due t o a s y m p t o t i c a l l y i n f i n i t e r e s i s t a n c e t o ze ro o r 

n e g a t i v e volumes i n each c e l l . Th is p rob lem need o n l y cause c o n c e r n 

f o r meshes w i t h very la rge d i s t o r t i o n s . Never the less , f o r such cases 

i t does c o n s t i t u t e a s e r i o u s d rawback , c a u s i n g t h e c o m p u t a t i o n s t o 

crash unless the mesh i s rezoned. 

To overcome t h e p r o b l e m of t a n g l i n g over i n MD meshes, a new 

f a m i l y of co r rec ted elements i s proposed in sec t i on 4.2.3: c o r r e c t e d 

MTQ (MTQC) and co r rec ted MTB (MTBC) f o r 2 and 3-D r e s p e c t i v e l y . These 

elements recover a s y m p t o t i c a l l y the res i s tance to zero volumes of the 

bas i c CST e l e m e n t s , when one c e l l i n t h e Mixed D i s c r e t i z a t i o n group 

becomes much s m a l l e r t han t h e r e s t and tends t o zero vo lume. The 

a b i l i t y of mode l l ing incompress ib le f l o w i s ma in ta ined , thus p rov i d i ng 

a more robust a l t e r n a t i v e to MD. 

4 . 2 . 1 CONSTANT STRAIN TRIANGLES AND TETRAHEDRA (CST ELEMENTS) 

Cons tan t s t r a i n t r i a n g l e s and t e t r a h e d r a (CST) may be used 

d i r e c t l y as such f o r e l a s t i c ana lyses, or as the basic i n g r e d i e n t f o r 

MD (sect . 4.2.2) or c o r r e c t e d MD ( s e c t . 4.2.3) meshes. 
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i n t e r p o l a t i o n of deformat ion g rad ien ts 

Ve loc i t y g rad ien ts are i n t e r p o l a t e d at the c e n t r o i d of the c e l l 

f r o m d i r e c t use of d i f f e r e n c e e q u a t i o n s . Nodes are numbered N = 0 , l , 2 

( t r i a n g l e ) or N = 0 , l , 2 , 3 ( t e t r a h e d r o n ) ( f i g . 4 .1 ) . Node 0 i s t a k e n as 

an a r b i t r a r y re ference po in t . The d i f f e r e n c e equat ions take the fo rm: 

VP = v . . ( X N _ XQ) (4 .2 , 

where supe rsc r i p t s r e f e r t o nodes and subsc r i p t s r e f e r t o components. 

Using the n o t a t i o n ( ) I J= ( ) ! - ( ) J , (4 .1 ) may be w r i t t e n as f o l l o w s : 

v i v i , J x J (4 .3 ) 

This may be put into matrix form and inverted, to obtain 

[vi5JJ = [VR(i,N)JLXR(N,j)J -1 (4.4; 

where t he n o t a t i o n V R ( i , N J = v ^ ° , X R ( N , j ) = x J ° has been used . A l l 

matr ices in eqn. (4 .4 ) are 2x2 f o r 2-D or 3x3 f o r 3-D. 

The ra te of deformat ion and spin ra te tensors may be obta ined as: 

d i j = < v i , j + v J , i ) / 2 

w i j = < v i , j " v j , i ) / 2 

(4 .5 ) 

For 2-D a d d i t i o n a l cons ide ra t i ons must be made t o determine the 

o u t - o f - p l a n e componen ts . Assuming a x i s no. 3 p o i n t i n g out of t he 

p lane, these cond i t i ons are: 

- Plane s t r a i n , d33=0; 

- Plane s t r e s s , 033=0; t h i s is a s t ress c o n d i t i o n which must be used 

together w i t h the s t r e s s - s t r a i n law to ob ta in the app rop r ia te ra te of 

d e f o r m a t i o n (eqns. 4 . 4 1 , 4 .42 ) ; 

- Axi symmetr ic (axis 2 of symmetry), d3 3 = y\/^\ at each po in t in the 

cont inuum; t h i s c o n d i t i o n may be re laxed by en fo r c i ng i t only at the 
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Finure 4.1: Trianaular and tetrahedral cells 

Fioure 4.2: Path for stress inteqral around node 1 
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t r iang le cent ro id , 

d = (v° + vj + v j ) / 3 (4.6) 

3 3 (x¥ + x{ + x f ) / 3 

Generalized natural s t ra in increments are defined as 

Ae-ij = d ^ A t (4 .7) 

where At i s the computat iona l t i m e - s t e p . These increments may be 

decomposed in to : 

- Volumetric par t , Aev = A6^ 

- Deviatoric par t , A2-\j = ASjj - 5-jj/iCkJ</3 (4.8) 

Integrat ion of stresses to obtain nodal forces 

The i n t e r n a l fo rce app l ied at each node 1 may be obta ined by 

i n t e g r a t i n g the st resses in a c losed surface c o n t a i n i n g the node, 

S ( D : 

PJ1} = \ ^i jnjdS (4.9) 
S( l ) 

where nj "is the ( u n i t ) outward normal to S ( l ) . S ( l ) i s cons t ruc ted in 

2-D ( f i g . 4.2) by fo rming a polygon j o i n i n g the cen t ro ids of the 

t r iangles and centres of the sides sharing node 1, agbpcqdresfta. In 

fac t , th is polygon is only a cross-section of surface s C ) ; for plane 

s t r a i n and plane s t ress S^ ) i s a slab of th ickness t , wh i l e f o r 

axisymmetric models i t is the surface of revolut ion generated ro ta t ing 

the polygon around the axis of symmetry. A s i m i l a r sur face may be 

cons t ruc ted in 3-0 from a polyhedron w i t h corners in cen t ro ids of 

tetrahedra, centroids of faces and centres of edges. 

The c o n t r i b u t i o n of each c e l l to the nodal forces is d e t a i l e d 

below f o r 2-D. The no ta t i on of f i g . 4.2 w i l l be f o l l o w e d f o r node and 

ce l l numbers. Di f ferent formulat ions are necessary for plane s t ra in or 

stress and axisymmetric models. 
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Plane s t r a i n or plane s t ress 

From eqn. (4.9) t h e c o n t r i b u t i o n of c e l l C t o t h e f o r c e a t 1 i s 

obta ined as f o l l o w s : 

pj1 ) C = t f CT^-rK-ds (4.10) 
"IJ J 

agb 

The t h i c k n e s s t i s c o n s t a n t (=1) f o r p lane s t r a i n but may vary f o r 

plane s t r ess . Cons ider ing Gauss' theorem, the i n t e g r a l in eqn. (4.10) 

may be expressed as f o l l o w s : 

CTijnJds = J a i j n j d s + J a i j n j d s = J ffij,jdA + J * i j n j d s ( 4 ' U ) 

agb agba ab ^agba a b 

where Aaqt,ais the plane area enclosed by agba. As the divergence of a 

constant f i e l d is n u l l , the integral over th i s area is zero. The nodal 

force becomes: 

p j 1 ^ = t fffj f njds (4.12) 

ab 

( CT11 CT12\ 

or e x p l i c i t l y in mat r i x fo rm: 

LPJDC, p£l)Cj = t [ x n m j xmn j [ " " | ( 4 > 1 3 ) 

r12 CT22 

Axisymmetric 

C y l i n d r i c a l c o o r d i n a t e s are used f o r d e s c r i b i n g a x i s y m m e t r i c 

models ( x i r a d i a l coo rd i na te , x2 a x i a l coo rd i na te ) . The divergence of 

a c o n s t a n t v e c t o r i s no l o n g e r z e r o as i t was f o r C a r t e s i a n 

c o o r d i n a t e s : 

d i v L " i ! viZ * i 3 J = ffjn + ^ 3 3 + ^ i 2 , 2 / x l + o r i l / x i = ^ i i / X i (4 .14) 
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The c o n t r i b u t i o n of a c e l l C t o the i n t e g r a l i n eqn. (4 .9 ) becomes 

/ ^ i j n j d S + j CTijnjdS = / ( ^ i/xl)Znx.ldh + I CTi j ^ / r x ^ j d s = 

sagba sab Aagba a b 

;4.15) 

= (7r/6)ACor i l + 2 7T x } ^ - j |ab| n j b 

where: S a q t ) a , S a b denote sur faces of r e v o l u t i o n generated by agba & ab 

AC t o t a l Cel l area 

A agba = AC/6 , area enclosed by t r i a n g l e agba 

|ab| , n are the leng th and u n i t normal of segment ab 

In a d d i t i o n t o the terms from eqn. (4.15), r a d i a l fo rces are produced 

by t he hoop s t r e s s e s <733. These f o r c e s are not i n c l u d e d i n (4 .15 ) , as 

t h e i n t e g r a l s c o v e r t h e c o m p l e t e 2 t o r o i d where o p p o s i t e r a d i a l 

components cance l out ( f i g . 4 .3 ) . However , i f one c o n s i d e r s o n l y a 

sec to r of angle <p : 

PJD = r P ^ ) d = ^ D = J a33dA 

and the c o n t r i b u t i o n of c e l l C f o r the complete 2 i s : 

p{DC = 1 AZo332n= 2 j a 3 3 A C ( 4 < 1 6 

wh ich added t o (4.15) g i v e s t h e t o t a l nodal f o r c e c o n t r i b u t i o n s . In 

mat r ix fo rm, 

y 
CT12 a 2 2 / (4 .17) 

+
 6 A C L f f l l CT12J +

 3 - A C C ^ 3 3 °J 

4 .2 .2 MIXED DISCRETIZATION (MTQ, MTB ELEMENTS) 

Mixed d i s c r e t i z a t i o n p rocedu res are d e s c r i b e d i n t h i s s e c t i o n . 

Th is t e c h n i q u e s a v o i d t h e e x c e s s i v e s t i f f n e s s o therw ise assoc ia ted 

w i t h constant s t r a i n t r i a n g l e s or t e t rahed ra f o r incompress ib le f l o w 

(see sec t . 3 . 7 . 1 ) . 
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A c c o r d i n g t o iMagtegaal , Parks and Rice (1974) , f o r a c c u r a t e 

mode l l i ng of i ncompress ib le p l a s t i c f l o w , the r a t i o between the number 

of Degrees Of Freedom (DOF) in the mesh and the number of c o n s t r a i n t s 

imposed by the i n c o m p r e s s i b i 1 i t y c o n d i t i o n must be > 1. For Constant 

S t r a i n T r i a n g l e s , The r a t i o D O F / c o n s t r a i n t s f o r i n f i n i t e l y r e f i n e d 

p l ane s t r a i n and a x i s y m m e t r i c meshes i s equal t o 1 ( c o n s i d e r i n g f o r 

t h e a x i s y m m e t r i c case t h a t t h e r a d i a l l y v a r y i n g hoop s t r e s s e s are 

reduced to the value at the element c e n t r o i d (eqn. 4.6), o the rw ise the 

r a t i o wou ld be 1/3) ( t a b l e 3.1) . For t e t r a h e d r a f o r m i n g b r i c k s i n a 

regu la r l a t t i c e , the r a t i o i s e i t h e r 3/5 or 3/6 depending on whether 

each b r i ck i s composed of 5 or 6 t e t rahed ra ( tab le 3.1). 

Nagtegaal e t a l . (1974) s u g g e s t e d a m o d i f i e d v a r i a t i o n a l 

p r i n c i p l e to improve meshes which would o the rw ise be u n s u i t a b l e . The 

idea behind t h i s m o d i f i c a t i o n i s to make sure d i l a t a t i o n i s governed 

by f e w e r p a r a m e t e r s than f o r c o n v e n t i o n a l e l e m e n t s . S t a r t i n g f r o m 

e l e m e n t s w i t h more than one i n t e g r a t i o n p o i n t , t h i s i s a c h i e v e d by 

a v e r a g i n g t h e v o l u m e t r i c s t r a i n s w i t h i n each e l emen t ( e f f e c t i v e l y 

p e r f o r m i n g a reduced i n t e g r a t i o n on t h e m ) . Based on t h e same 

p r i n c i p l e , Mar t i and Cundall (1982) have proposed Mixed D i s c r e t i z a t i o n 

(MD) p r o c e d u r e s v a l i d f o r FE or FD meshes w i t h l o w e r o r d e r e l e m e n t s 

(one i n t e g r a t i o n p o i n t ) , i n which vo lume t r i c s t r a i n s are averaged f o r 

groups of several e lements. 

The i d e a l v a l u e f o r t he r a t i o D O F / c o n s t r a i n t s i s t h a t of t h e 

cont inuum, in which f o r each ma te r i a l po in t t he re i s one vo lume t r i c 

e q u a t i o n and U (no. of space d i m e n s i o n s ) DOF. Us ing MD these i d e a l 

r a t i o s are a c h i e v e d i f a v e r a g i n g i s p e r f o r m e d w i t h i n t h e f o l l o w i n g 

MD groups ( tab le 3 . 1 ) : 

- 2 Tr iang les in one Q u a d r i l a t e r a l f o r 2-D (MTQ e lements ) ; 

- 5 or 6 Tetrahedra in one Br ick f o r 3-D (MTB e lements ) . 

I f Ci ( i = l t o M) s tands f o r t h e i n d i v i d u a l c e l l s and £ f o r t h e 

t o t a l e l emen t (MTQ or MTB), t h e M ixed D i s c r e t i z a t i o n p r o c e d u r e 

c o n s i s t s s imp ly of s u b s t i t u t i n g the vo lume t r i c s t r a i n s in each c e l l by 

the volume-weighed average of the group: 



4.3: Radial forces from Hoop stresses (axisymmetric mooel) 
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M M 

i = l i = l 

where V^i are the volumes of the i n d i v i d u a l c e l l s . M=2 f o r 2-0 and M=5 

or 6 f o r 3-D. For ax i s y m m e t r i c m o d e l s , t h e average i n eqn. (4.18) i s 

a r e a - w e i g h e d i n s t e a d , i n o r d e r t o a v o i d p rob l ems near t h e a x i s o f 

symmetry. 

Apart f rom having the idea l number of vo l ume t r i c c o n s t r a i n t s , MTQ 

or MTB e l e m e n t s w i l l p roduce n o n - z e r o s t r a i n s and s t r e s s e s i n t h e 

component c e l l s f o r any se t of c o r n e r movements. No z e r o - e n e r g y 

hourg lass ing may occur, as i t i s opposed by d e v i a t o r i c s t resses . 

V a l i d a t i o n examples f o r MO p rocedu res i n s i m p l e p l a s t i c i t y 

problems are prov ided i n s e c t i o n s 5.4.1 and 5.4.2. 

4 .2 .3 PREVENTION OF NEGATIVE VOLUMES (MTQC, MTBC ELEMENTS) 

One impor tan t advantage of CST elements i s t h a t no t a n g l i n g over 

may occur w i t h o u t o c a s s i o n i n g n e g a t i v e vo lumes i n t h e bas i c c e l l s 

(Johnson, 1976). A hypoe las t i c ma te r i a l w i l l generate r e s i s t i n g forces 

t h a t grow towards i n f i n i t e as the volume tends to zero. This advantage 

i s l o s t by MO, w h i c h a c c e p t s ze ro vo lume i n one c e l l w i t h o u t 

generat ing i n f i n i t e r e s i s t i n g pressures, as long as the whole MO group 

has a non-zero volume. This may be seen l e t t i n g the volume of one c e l l 

Cj tend to zero: 

i f V C j — * 0 

CST: Z\P = K4€§J = K(/AVC:i/VCj ') —* - CO 

MO : 4P = K 4 6 v = K(4e§Jv C : i +y ^ C i v
C l ) / v E - ^ > K ( \ A6§ 1 V C l ) /V E 

i t J i 3*j 

( f i n i t e ) 

This f a c t has a number of u n d e s i r a b l e s i d e - e f f e c t s . Large 

reduct ions in volume are u s u a l l y assoc ia ted w i t h la rge d i s t o r t i o n s in 
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s h a p e , c a u s i n g c o n s i d e r a b l e n u m e r i c a l e r r o r s as the e l emen t 

i n t e r p o l a t i o n s become i l l - c o n d i t i o n e d . On the other hand, the c r i t i c a l 

t i m e - s t e p w i l l be reduced, i nc reas ing the costs g r e a t l y . F i n a l l y , i f 

n e g a t i v e v o l u m e s o c c u r f r o m t a n g l i n g o v e r i n t h e m e s h , t h e 

c a l c u l a t i o n s w i l l crash. I t must be no ted t h a t t hese p r o b l e m s occu r 

o n l y f o r s p e c i a l cases w i t h h i g h l y d i s t o r t e d L a g r a n g i a n meshes. 

However they do d e t r a c t s e r i o u s l y f rom the robustness of MD procedures 

f o r general a p p l i c a t i o n s . 

Johnson (1981) has recognized t h i s prob lem, but his s o l u t i o n has 

been an i n c o n s i s t e n t use of averaging procedures. For c e r t a i n c r i t i c a l 

po r t i ons of the c a l c u l a t i o n s , averaging i s sw i tched o f f , i n order not 

t o i n c u r i n o v e r l a p p i n g . No e x p l a n a t i o n i s g i v e n by Johnson f o r t h e 

i n e v i t a b l e loss of accuracy, except the convenience of the ana l ys t . 

A c o n s i s t e n t s o l u t i o n i s p r o p o s e d h e r e u s i n g a M i x e d 

D i s c r e t i z a t i o n mesh tha t recovers the res is tance to negat ive volumes 

of CST e lements , when f o r an i n d i v i d u a l c e l l the volume tends to zero , 

V !-'J->U. Th is t a k e s t he shape of a c o r r e c t i o n t o t he averaged 

v o l u m e t r i c s t r a i n i n c r e m e n t (A€v) f r o m eqn. (4 .18 ) : 

AeJ1
 := A(£ +amin(Ae§J,0) i ;vE / (MVC i) - 1J (4.19a) 

where M i s the number of c e l l s i n the MD group, and a i s an e m p i r i c a l 

c o e f f i c i e n t (a=0.01 i s the recommended d e f a u l t va lue) . This c o r r e c t i o n 

only operates when vo l ume t r i c s t r a i n increments in the sma l l es t c e l l 

of the group are compressive ( i . e . c e l l volume i s being decreased). 

I t can be seen e a s i l y t ha t t h i s c o r r e c t i o n (eqn. 4.19) conserves 

the volume weighed average, thus m a i n t a i n i n g the cons is tency of the 

computa t ions . C a l l i n g the new average {Ae\j): 

( ^ ^ ( J ^ e ^ v 0 1 ) /vE= ^ e ^ + o ; m i n ( z \ e 5 J , 0 ) ( l / V E ) ^ [ ( V E v C i ) / ( M V C i ) - V C i J 

(4.19b) 

where the second term on the r i g h t hand s ide i s n u l l , as V = ) V . 

On the o t h e r hand, when t h e c e l l vo lume tends t o ze ro t h e 

v o l u m e t r i c s t r a i n i n c r e m e n t grows a s y m p t o t i c a l l y , p r o d u c i n g an 
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infinite resistance to,tangling over 

f0r v C j — » 0, d€§J := ^ +Q!min(Z\e5J,0)LVE/(MVCJ)-lJ — » -oo (4.20) 

For axi symmetr ic problems, again the c o r r e c t i o n fo rmula must be 

area w e i g h e d . In o r d e r t o p r e s e r v e t h e v o l u m e - w e i g h e d average (eqn. 

4.19b) the axi symmetr ic c o r r e c t i o n takes the form 

A€^ := Ae£ + a m i n ( 4 e 5 J , 0 ) [ A E / ( M A C i ) - l J r E / r C i (4 .21) 

where A , A are areas of the i n d i v i d u a l c e l l s and complete element 

r , r are the r a d i a l coord ina tes of t h e i r c e n t r o i d s . 

The new e l e m e n t s c r e a t e d by t h i s c o r r e c t i o n a g a i n s t n e g a t i v e 

volumes in MO procedures w i l l be c a l l e d : 

MTQC (MTQ co r rec ted ) f o r 2 -0 ; 

PlT'tlC (MTB c o r r e c t e d ) f o r 3-0 . 

A s i m p l e t e s t w i t h a q u a d r a n g l e , i n wh i ch one of t he component 

t r i a n g l e s tends to zero volume, was done to v e r i f y the behaviour of 

t hese e l e m e n t s ( f i g . 4 .4 ) . For Cons tan t S t r a i n T r i a n g l e s (CST), t he 

r e s i s t i n g fo rce grows towards i n f i n i t y when a node t r i e s to cross over 

t h e o p p o s i t e s i d e . MTQ and MTQC e l e m e n t s d i s p l a y a s o f t e r r e s p o n s e , 

both being near ly i d e n t i c a l up t o 90% reduc t ion in volume. For f u r t h e r 

reduc t i ons , the res i s tance of MTQC elements shoots up s teep ly towards 

i n f i n i t y , w h i l e MTQ a l lows c ross ing over (negat ive volume). 

This impor tan t r e s u l t means t h a t the new proposed elements are 

capable of accu ra te l y mode l l i ng incompress ib le p l a s t i c f l o w , even f o r 

s i t u a t i o n s w i t h ve ry l a r g e d i s t o r t i o n s , but r e c o v e r t h e d e s i r a b l e 

r e s i s t a n c e o f CST meshes t o o v e r l a p p i n g . F u r t h e r r e s u l t s u s i n g MTQC 

elements are presented in sec t ions 5.4, 5.7, and 7.3.4.4 which c o n f i r m 

t h i s p o i n t . 
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4.2.4 MASS LUMPING PROCEDURE 

The mass in the discrete model is lumped at the gr id -po in ts , by 

in tegrat ing the continuum mass over a volume surrounding each node. 

For a Lagrangian mesh, nodal masses need only be computed once, at the 

beginning of the ca lcu lat ions. Two condit ions must be met by the mass 

lumping procedure: f i r s t l y the centre of gravi ty must be preserved for 

dynamic c a l c u l a t i o n s , and secondly the volume of i n t e g r a t i o n , f o r 

consistency, must correspond to the surface used when in tegrat ing the 

st resses ( f i g . 4.2). 

The c o n t r i b u t i o n of a c e l l C to the mass of node 1 is ( f i g . 4.2): 

- Plane stress or plane s t ra in 

PValbg = P t A a l b g = PtAim n /3 (4.22) 
(1/3 of the mass to each node) 

- Axisymmetric 

Pvalbg = P f 2 7 r r d A =p(7T/54)A lmn(22r1 + 7rm + 7rn) (4.23) 
Aalbg 

For 3-D, l / 4 t h of the mass of every te t rahedron is lumped at each of 

i t s nodes. 

4.3 MOMENTUM BALANCE 

Having integrated the stresses (eqn. 4.9) and obtained the nodal 

masses (eqns. 4.22, 4.23), balance of momentum i s app l ied l o c a l l y , 

us ing the i n t e g r a l form of the p r i n c i p l e (eqn. 2.28). Note tha t the 

corresponding f i e l d equat ion (Cauchy's eqn. of mo t ion , (2.29)) 

requires a stronger d i f f e r e n t i a b i l i t y , which is not sa t i s f i ed at the 

element in ter faces. 

Integrat ing over a small surface s ( ^ around each node 1, 

u ( 1 ) = [ / crndS + M^1 ) f + R^1 ) ] / M ( 1 ) (4.24) 
JS(D 

where: R^ ' are intensive forces applied on node 1 

IV ' is the mass lumped at 1. 
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4.4 CENTRAL DIFFERENCE TIME INTEGRATION 

The accelerations are integrated in time with a centred scheme to 
provide new values for velocities and displacements: 

•n+1/2 = Qn-1/2 + j j n ^ (4#25) 

un+l = un + ^n+1/2^ (4>26) 

Note that all the variables representing rates or increments are 
defined at mid-step. The central difference equations (4.25, 4.26) 

together with the discretized momentum balance eqns. (4.24), form an 

uncoupled system, which may be solved independently for each node in 

the mesh. 

The numerical dispersion (frequency distortion errors) associated 

with a lumped mass idealization and a central difference scheme are of 
different signs (Key, 1978), which makes this combination a natural 

choice for explicit models. 

4.5 CONSTITUTIVE MODELS 

Explicit schemes allow a great generality in the constitutive 
laws that can be modelled. In principle, any law that can be expressed 
explicitly in the following rate form is acceptable: 

8= C(E,d, ff.K.T) (4.27) 

where: <j represents an object ive stress rate (section 2.5.1) 

K is a set of material parameters 

T is the temperature 

E is Green's s t ra in tensor 

d is the rate of deformation tensor. 

For the present work, the c o n s t i t u t i v e laws considered are 

e las t i c -p las t i c models with Von Mises y i e l d c r i t e r i o n . A hypoelastic 

p r e d i c t i o n is computed f i r s t , and then co r rec ted back to the y i e l d 

surface i f the y i e l d condit ion is exceeded (radial return). For a more 
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complete study of c o n s t i t u t i v e laws in e x p l i c i t F i n i t e Di ference 

Lagrangian codes, see Herrmann and Bertholf (1983). 

4 . 5 . 1 HYPOELASTICITY 

The basic (predictor) cons t i tu t i ve behaviour is a hypoelastic law 

of the type: 

CT^ = A d k k 5 i j + 2Gdij - a(3A+2G)f<$ij (4 .28) 

where A,G are Lame's e las t ic constants 

T is the temperature rate 

t r i s the coe f f i c ien t of thermal expansion 

Hypoelast ic s t resses are computed always as p r e d i c t o r s , being 

la ter corrected for other types of behaviour i f needed. Al l stress and 

deformat ion measures used in eqn. (4.28) r e f e r to the cu r ren t 

conf igura t ion ; i t produces a l inear re la t ion between true stress and 

na tu ra l s t r a i n in a u n i a x i a l t e s t . For la rge s t r a i n s (4.28) does not 

der ive from an e l a s t i c p o t e n t i a l ( h y p e r e l a s t i c ) . For smal l s t r a i n s , 

both concepts are equivalent. 

4 . 5 . 2 PLASTICITY; RADIAL RETURN ALGORITHM 

The p l a s t i c y i e l d c r i t e r i o n is a s t ress c o n d i t i o n , d e f i n i n g a 

y i e l d surface in s t ress space. The y i e l d c r i t e r i o n depends on the 

history of deformation, through the p las t i c hardening parameters, Q: 

F((7,Q) = 0 (4 .29) 

The t r i a l stress from the hypoelastic predict ion (eqn. 4.28) , 

C7[? + 1 =Gn
 + <j£+1 /2 /U (4.30) 

i s tes ted w i t h the y i e l d c r i t e r i o n , eqn.(4.29). I f F(<7£+1)<0 no 

correct ion is necessary: 

0* + 1 = Gn
E

+1 
(4.31) 
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I f F ( a ^ + 1 ) > 0 the s t resses are re tu rned norma l l y to the y i e l d sur face 

( f i g . 4 . 5 ) : 

a n + l = a n + l _ ( / 5 / 3 ) ^ { 4 > 3 2 ) 

Aon+l/Z - an+l - a n 

where /3 i s a sca la r f a c t o r , used f o r convenience of p resen ta t i on . The 

new st resses must s a t i s f y F ( < j n ) = 0. 

Th i s r a d i a l r e t u r n method i s due t o W i l k i n s (1964) . Other (more 

s o p h i s t i c a t e d ) methods f o r c a l c u l a t i n g the s t ress update e x i s t , such 

as t h e t a n g e n t s t i f f n e s s r a d i a l r e t u r n (e .g . K r i e g and Key, 1976). A 

v a r i a t i o n t o t h e r a d i a l r e t u r n me thod , a p p l y i n g t h e c o n s i s t e n c y 

c o n d i t i o n t o t he end s t a t e r a t h e r t han i n a d i f f e r e n t i a l sense has 

a l s o been proposed by K r i e g and Key (1976) . R e c e n t l y , O r t i z and Simo 

(1985) have proposed more gene ra l " r e t u r n mapping a l g o r i t h m s " , f o r 

a r b i t r a r y p l a s t i c models and non-constant tangent e l a s t i c i t y t enso rs . 

R e s u l t s o b t a i n e d here (e .g . s e c t . 5.6) i n d i c a t e t h a t f o r t h e s m a l l 

e x p l i c i t s t eps u s e d , even i n h i g h l y n o n - l i n e a r c a l c u l a t i o n s , t h e 

performance of the s imp les t r a d i a l r e tu rn method i s acceptab le . 

The ra te of de fo rmat ion tensor is composed of e l a s t i c and p l a s t i c 

p a r t s : 

d = de+ d p (4 .33) 

The elastic component may be expressed as 

d E = l _ s + L l a s + 9KT a J • (4.34) 
ij 2G ij E kk ij 

wh ere s-jj are the d e v i a t o r i c s t resses (eqn. 2 . 5 9 ) , and K= A+2G/3. 

In t h e f o l l o w i n g , i t w i l l be assumed t h a t t h e y i e l d s u r f a c e i s a Von 

Mises c y l i n d e r , w i t h no dependence on h y d r o s t a t i c s t r e s s e s . The 

p l a s t i c c o r r e c t i o n (4.32) t a k e s p l a c e i n t h e d e v i a t o r i c h y p e r p l a n e 

(^ k k = c o n s t a n t ) , as W- = 35- Hence, t he v o l u m e t r i c s t r e s s - s t r a i n 

behaviour is pure ly e l a s t i c : 
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Figure 4.5: Radial return plastic stress correction 



ffkk = <^k = 3K(dkk - 31a ) (4.35) 

The ra te of de format ion may be expressed inver t ing eqn. (4.28): 

d i i = J _ s^j + I ( ^kk +9KTa) 5^- (4.36) 
2G E 

The p l a s t i c r a t e o f d e f o r m a t i o n i s d e r i v e d c o m b i n i n g eqns. 

( 4 .32 ) , ( 4 .33 ) , (4.34) and (4 .36 ) : 

dP = d - dE = l_(sE - s) = MldL (4.37) 
2G 2G do 

Hence the r e t u r n a l g o r i t h m (eqs. 4.30 - 4.32) i m p l i c i t l y d e f i n e s a 

no rma l i t y ru le f o r the p l a s t i c f l ow ( a s s o c i a t i v i t y ) . 

In p a r t i c u l a r , f o r a Von Mises y i e l d c r i t e r i o n w i t h k i n e m a t i c -

i s o t r o p i c hardening of the type 

F = ( 3 / 2 ) ( S i j - « i j ) ( s i j - a - j j ) - Y2 (4 .38) 

if the plastic condition is reached (F(ajr ) > 0), the deviatoric 

stresses are simply scaled back along the radius of the Von Mises 

ci rcle (fi g. 4.5): 

s-1]1- «ij = ((s?} 1^ -« i j)/(l+/3) (4.39) 

and i f the hardening is purely isot ropic ( a ^ = 0 ) : 

s? ] 1 = (s r
j
1 j 1 ) E / ( l+ /J ) (4.40) 

The plane s t ress c o n d i t i o n ^33=0 requires special treatment in 

the e l as t i c -p l as t i c a lgor i thm. I f the ma te r i a l behaves e l a s t i c a l l y , 

plane s t ress i s enforced i m p l i c i t l y by s e t t i n g ( in terms of the 

incremental s t ra ins , eqns. (4 .7 ) , ( 4 .8 ) ) : 

A633 = V— {A6n + A€Z2) ( 4 . 4 1 ) 
l-v 

If plastic deformations occur within the step, an exact one-step 
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a l g o r i t h m en fo r c i ng the plane s t ress c o n d i t i o n i s not poss ib le (as the 

p l a s t i c c o r r e c t i o n i s s t ress-dependent ) . I t may be achieved app ly ing 

t he f o l l o w i n g c o r r e c t i o n s a f t e r t h e r a d i a l r e t u r n (eqn. 4.32) i s 

per formed: 

'am : = "^33 

Aev := A(Jm/(A+2G/3) (4.42) 

Ae^ := Ae^ + (1/3)(A€° - A6y)8^ 

where: am = (1 /3 ) a ^ , mean s t ress 

Ae° = p red ic ted vo lumet r i c s t r a i n 

This c o r r e c t i o n imp l ies a s/ery s l i g h t vo lumet r i c n o n - a s s o c i a t i v i t y , 

<+l = U £ + 1 ) E / U + ^ ) (4-43) 

wh ich has no e f f e c t f o r d e v i a t o r i c p l a s t i c i t y c r i t e r i a (e .g . Von 

M ises ) . 

4 .5 .3 HARDENING AND UNIAXIAL STRESS-STRAIN LAWS 

P l a s t i c s t r a i n s g ive r i s e to ma te r i a l hardening. For a k i n e m a t i c -

i s o t r o p i c Von Mises model (eq. 4.38) t he h a r d e n i n g i s composed of a 

k i n e m a t i c t r a n s l a t i o n ( « - j j and an i s o t r o p i c expans ion (Y) of t he 

y i e l d su r face : 

0 9 p 

3 (4 .44 ; 

AY = h Y A e p 

where ^e P = - Ae^ Ae^A (effective plastic strain increment) 

ha and hy are the kinematic and isotropic moduli respectively 

The plastic hardening modulus in uniaxial tension is 
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h' = h a + hY (4.45) 

I f ha = 0, hardening is pure ly i s o t r o p i c ; i f hY = 0, i t is pure ly 

kinematic. 

Un iax ia l s t r e s s - s t r a i n laws may be def ined as the t r ue ax ia l 

stress - natural axial s t ra in curves in uniaxia l tension tests (sect. 

6.2) : 

o= f ( € ) (4.46) 

where the n o t a t i o n a= ^ n , e= e n has been used. Decomposing the 
d i f f e r e n t i a l s t ra in increment in to e las t ic and p las t i c components, 

de = deE + dep = da( l /E + 1/h") (4.47) 

the to ta l s t ress-s t ra in modulus may be expressed as 

h = ^L = I ( 4 . 4 8 ) 
de 1/E+l/h' 

Un iax ia l s t r e s s - s t r a i n laws are convenient f o r s p e c i f y i n g 

isot ropic material behaviour. A few examples of laws used w i th in th is 

work are given in f igure 4.6. 

The y i e l d condit ion may depend also on the s t ra in - ra tes and the 

tempera tu re , which prov ide a d d i t i o n a l sources of hardening (or 

sof tening, as the case may be): 

Y = Y 0 ( / ) f R ( e P ) f T ( T ) (4.49) 

Functions f^ (s t ra in - ra te dependence) and f j (temperature dependence) 

may be defined as piecewise l inear laws. A useful analyt ica l form for 

fR is (Bodner and Symonds, 1960): 

f R (e P ) = 1 + (eP /B)m (4.50) 

where m and B are ma te r i a l cons tan ts . Eqn. (4.50) is equ iva len t to a 



h=1/ (l/h'+l/E) 

o = Ee (o<o„) 
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Fiqure 4.6: Uniaxial s t ress-s t ra in laws implemented in numerical model 

'A • = min. Area i 
' rrnn i 
of any element) | 
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NODE-SIDE 

NODE-NODE 

K 

Finure 4.7: Node to node and node to side contacts - regions and normals 
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v i s c o p l a s t i c i d e a l i z a t i o n such as suggested by Perzyna (1963) or Owen 

and Hinton (1980): 

ep = 7 < ( F / F 0 - i ) N > df_ (4 .51) 
do 

where: F0 and F are the static and dynamic yield conditions resp.; 

<A> = A for A>0, 

<A> = 0 for A<0. 

Equivalence between eqns. (4.50) and (4.51) is achieved by assigning 

the values 

m = 1/N 

•i B =7 1(2/3) &-:§^ 

4.5.4 OBJECTIVE STRESS RATES 

Rate-type c o n s t i t u t i v e equat ions (4.27) need to be fo rmu la ted in 

terms of o b j e c t i v e s t ress rates (sec t ion 2.5.1). Jaumann and Truesde l l 

o b j e c t i v e ra tes have been implemented i n c r e m e n t a l l y in the f o l l o w i n g 

way: 

Jaumann ra te of Cauchy s t ress 

SO + 1/2 = a n + 1/2+ an+V + l/2 + ffn + lwn + l / 2 ( 4 5 2 ) 
1J 1J ip WPJ JP Wpi 1<+.D£,| 

Truesde l l r a te of Cauchy s t ress 

Sn+1/2 = ^n+1/2 _ n + l n + 1 / 2 n+ l . .n+ l /2 , n + l n + 1 / 2 
i J i J ip VJ,P CTJP v i , P U VP,P 

= gn+1/2 _ n + l d n + l / 2 _ n + l d n + l / 2 _ n + l d n + l / 2 ( 4 5 3 ) 

1J " i p UPJ UJP U p i CT1J UPP \*.03) 

Other vectors or tensors (e.g. a , eqn. 4.44) linked to the 

material frame must also be corrected for rigid body rotations. For a 

vector T, a corotational rate equivalent to eqn. (4.52) is defined by 

^n+1/2 = i n +l/2 _ n+l/2Tn ( 4 > 5 4 ) 
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Note t h a t t h e r e i s h a l f a s tep l a g f o r t h e v a l u e s of s t r e s s e s i n eqns. 

(4.52) - (4 .54) . For e x p l i c i t i n t e g r a t i o n i n w h i c h s teps a re very 

small e r r o r s in t roduced by t h i s w i l l not be impor tan t (sect . 5.6). For 

l a r g e r i m p l i c i t s teps , more r igorous a l go r i t hms have been proposed by 

Hughes and Winget (1980) , P i n s k y , O r t i z and P i s t e r (1983) , and 

Rub ins te in and A t l u r i (1983) . 

Jaumann's r a t e i s t he most commonly used f o r m u l a t i o n , be ing a 

na tu ra l choice f o r removing r i g i d body r o t a t i o n s (Prager, 1961). Some 

incons i s tenc ies may a r i s e however in la rge de fo rmat ion s imple shear 

w i t h k i n e m a t i c h a r d e n i n g (Nagtegaa l and de Jong (1982) , D a f a l i a s 

(1983), Lee and M a l l e t t (1983)). On the other hand T ruesde l l ' s ra te i s 

t h e f o r w a r d P i o l a t r a n s f o r m a t i o n of t h e r a t e o f 2nd P i o l a - k i r c h o f f 

s t ress and provides a "canon ica l " form f o r h y p e r e l a s t i c r a t e equat ions 

(Pinsky, O r t i z and P i s t e r , 1983). 

Both T r u e s d e l l and Jaumann r a t e s can be made e q u i v a l e n t by 

a p p r o p r i a t e d e f i n i t i o n o f t h e c o n s t i t u t i v e t e n s o r (eqn. 3 .28) . The 

c l a s s i c a l e l a s t i c - p i a s t i c r e l a t i o n s (Prandt l -Reuss eqns. (2.64)) are 

exp ressed i n t e r m s of t r u e s t r e s s and t r u e s t r a i n ( H i l l , 1950) . The 

a s s u m p t i o n i s made h e r e , as by H i b b i t , Marca l and Rice (1970 ) , t h a t 

the Prandt l -Reuss equat ions are r e f e r r e d t o Jaumann rates of s t resses . 

4.6 DAMPING 

The semid i sc re te equat ions of motion (4.24) may be assembled in 

ma t r i x form f o r the complete model, and genera l i zed to inc lude v iscous 

dampi ng: 

Mii + Cii + P = R (4 .55) 

where M i s the diagonal mass m a t r i x , C i s the damping m a t r i x , and P, R 

represent i n t e r n a l and ex te rna l fo rces r e s p e c t i v e l y . 

A u s e f u l f o r m f o r t h e damping m a t r i x i s t h e s o - c a l l e d R a y l e i g h 
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damping: 

C = AM + BKt (4 .56) 

where: Kt is t n e tangent s t i f f n e s s m a t r i x , !Ct=dP/du 

A, B are the mass and s t i f f n e s s damping c o e f f i c i e n t s . 

R a y l e i g h damping a l l o w s eqns. (4.55) t o rema in u n c o u p l e d , and 

t h e r e f o r e i s e a s i l y implemented in an e x p l i c i t code. Mass damping i s 

i n t e g r a t e d i n t o the t ime-march ing scheme (eqns. (4.25), (4.26)) by the 

f o l l o w i n g ope ra to r : 

u n + 1 / 2 = [ u n _ 1 / 2 ( l - A / i t / 2 ) + M _ 1 ( R n - P n ) 4 t J / ( l + A A t / 2 ) (4 .57) 

w h i c h i m p l i e s a m o d i f i c a t i o n o f t h e t i m e - i n t e g r a t i o n eqn. (4 .25 ) . 

S t i f f n e s s damping i s cons idered by adding viscous f o r ce terms to the 

i n t e r n a l f o r c e s : 

p*n = Pn + B6ndPn/du (4 .58) 

approximated in f i n i t e d i f f e r e n c e form by 

P *n = pn + B A P n + l / 2 M t 

S t i f f n e s s damping i s considered by s u b s t i t u t i n g Pn i n eqn. (4.57) by 

p*n. 

The amount of damping p r o v i d e d by (4.56) i s a f u n c t i o n of t h e 

f r e q u e n c y . I f t h e sys tem of eqns. (4.55) i s put i n modal f o r m 

(assuming t a n g e n t l i n e a r b e h a v i o u r and s m a l l d i s t u r b a n c e s ) , one 

equat ion of the f o l l o w i n g type i s obta ined per mode: 

x + (A+B a»2)x + <w2x = r (4 .58) 

where x i s the modal ampl i tude and a> the frequency of v i b r a t i o n . The 

amount of damping f o r each frequency co i s given by 

/5 = (A/w + Bft> )/2 (4 .59) 
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where ft =1 corresponds to the c r i t i c a l damping. From eqn. (4.59) i t 

may be seen t h a t the e f f e c t of mass damping i s smal l f o r h igh 

frequencies, where s t i f fness damping is important, and viceversa. Mass 

damping may be l ikened to dashpots connecting each degree of freedom 

to ground, and s t i f fness damping to dashpots between connected nodes. 

4.7 STABILITY OF TIME INTEGRATION 

Four ier methods (e.g. Richtmeyer and Mor ton, 1967) may be used 

for studying the s t a b i l i t y of l inear systems and small perturbat ion 

tangent behaviour in non l inear systems. The d i f f e r e n t i a l modal eqns. 

(4.58) may be rewr i t ten as 

x + Zjicox + coZx = 0 ( 4 . 6 0 ) 

from which the ex te rna l f o r c i n g f u n c t i o n ( r ) has been dropped. The 

harmonic solut ion to t h i s equation is 

x n = e>>nAt = An ( 4 > 6 1 ) 

where V, A are complex numbers (note the s u p e r s c r i p t on A i s an 

exponent). S u b s t i t u t i n g eqn. (4.61) w i t h i n c e n t r a l d i f f e r e n c e eqns. 

(4.25 - 4.26) one obtains 

xn = (xn + 1-2xn + x n ' 1 ) M t 2 = An-l(AZ-ZA+l)/At2 

•n = ( X n + l _ x n - l ) / 2 4 t = An-l(A2-l)/ZAt 

!4.62 

which with eqn. (4.60) y i e l d 

A2(l+Atw/5) + A(^ 2 At 2 -2) + (1-AtwA) = 0 (4.63; 

for s t a b i l i t y , the solut ion A to t h i s equation must be complex and of 

modulus not greater than 1 . These condit ions impose 

fi >, 0 

At < IJl-d2 ( 4 . 6 4 , 
O) 
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The second condition must be satisfied for all the frequencies 

present in the model. As damping is usually small, a sufficient 

condition will be 

At < 2.V1_/32 (4.65) 
CO 

max 

Damping has an adverse e f f e c t on s t a b i l i t y , a l though s t i f f n e s s 

and mass damping behave d i f f e r e n t l y in t h i s respect. Considering that 

the condit ion (4.55) applies for the highest frequency of the model, 

from eqn. (4.59) i t may be seen that mass damping w i l l v i r t u a l l y have 

no e f fec t , while s t i f fness damping may be very det r imenta l . 

For undamped motion ( /3 =0) the c r i t i c a l t ime-step reduces to 

At < 2/o>max (4.65) 

An upper bound expression for the c r i t i c a l t ime-step is given by the 

Courant c r i t e r i o n (Courant, Fr iedrichs and Lewy, 1928), which l i m i t s 

the t ime-step to the in terva l necessary for the stress-waves to t ravel 

across one element, 

At < nmin/c (4.66) 

where hmin ^s t n e m ' i i r ' ,T1um element dimension, and c the maximum st ress-

wave v e l o c i t y . For an e l a s t i c - p l a s t i c ma te r i a l the f a s t e s t s t ress 

waves are the compressional or "P" waves, for which c = -J{A+2Gi)/p . 

4.8 MODELLING OF CONTACTS 

Contact between d i f fe ren t boundaries of one or more continua is 

frequent in impact modelling and imposes special nonlinear boundary 

c o n d i t i o n s . Two main aspects are i nvo lved in con tac t m o d e l l i n g : the 

contact in ter face laws and the detection of in te rac t ing surfaces. 
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4.8.1 CONTACT INTERFACE LAWS 

A penal ty method i s used f o r the contac t laws , c o n s i s t i n g of 

p lac ing i n t e r f a c e spr ings between " i n t r u d i n g " nodes and " t a r g e t " 

surfaces. Forces generated by these springs w i l l act on both sides of 

the in ter face. For complete symmetry of the log ic , both sides of the 

i n t e r f a c e may be taken in t u rn as " i n t r u d i n g " s ides . The i n t e r f a c e 

laws are 

Normal force: F? = KNdN 
C 

(4.68) 

- Shear force: F£ = min(Ksdf Fg/* ) 

where K , K^are the normal and shear s t i f fness values 

d , d are the normal and shear penetrations 

fj. is the coef f i c ien t of f r i c t i o n 

The shear law defines a kinematic s l i p c i r c l e of radius FQ ^ /K ^ 

Note that the penetration d is a vector l inked to the Lagrangian frame 

and t h e r e f o r e must be updated w i t h a c o r o t a t i o n a l f o r m u l a t i o n (eqn. 

4.54). 

An important deta i l of the formulat ion is the value used for the 

contact s t i f fness . Marti (1983) uses a constant user-defined value for 

the whole model, which should be of s im i l a r magnitude to the element 

s t i f f n e s s . This method i s s imple and app rop r i a te f o r un i f o rm 3-D 

meshes, but problems w i l l a r i se f o r non-un i fo rm or ax isymmet r i c 

models. H a l l q u i s t (1982) computes a d i f f e r e n t s t i f f n e s s f o r each 

contact, proportional to that of the target element. 

In t h i s work, the contac t s t i f f n e s s va r ies f o r each c o n t a c t , 

using a simple but e f fec t i ve method. The s t i f fness is calculated for 

each contact as 

K = Ml/Atl ( 4 # 6 9 ) 

where M̂  is the mass of the in t rud ing node 

Atc is the c r i t i c a l t ime-step for the model (eqn. 4.66) 

k is a coe f f i c ien t normally defaulted to 0.1 (Larger values may 
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cause i n s t a b i l i t i e s i f a corresponding reduction is not used for 

the computational t ime-step) 

This form f o r the contac t s t i f f n e s s ensures a value below the 

maximum element s t i f f n e s s in the model (thus not compromising 

s t a b i l i t y ) and above the s t i f f n e s s of the element in contac t (thus 

avoiding unacceptable penetrat ions): 

- maximum element s t i f fness - Kmax = ( l /4 )V c r (A+2G) /h2 i n 

- contact s t i f fness - KQ = 2kVcr(A+2G)/hm-jn 

- interface ( target) element s t i f fness - KT = (1 /4)VT (A +2Gvh^ in 

where Vcr i s t n e v o ^ u m e ° f t n e element giv ing the c r i t i c a l t ime-s tep, 

and VT that of the inter face target element. 

This der ivat ion of the contact s t i f fness also produces a uniform 

"push-back" recovery ac t i on along the contac t i n t e r f a c e , which is 

impor tant s p e c i a l l y f o r ax isymmetr ic models, where the element 

s t i f f n e s s e s and masses are radius dependent. This may be shown by 

considering the accelerations at the in t rud ing side (a1) and target 

side (aT) for a given penetration d: 

a I = FQ/M 1 = Kd/At^ 

(4 .70) 

aT = FC/MT = (KdMt^)(M I/MT) 

Assuming the mesh is uniform on both sides of the in ter face ( M * / M T = 1 ) , 

for symmetric (double) contacts the recovery of the penetration in one 

time-step w i l l be 

dR = 2 ( l / 2 ) ( a I + a T )At 2 = Kv2d (4 .71) 

where At=rjAtc is the computational t ime-step ( * /< l ) . The mesh can be 

non-uniform along the contact in te r face , but should generally not be 

too d i f fe ren t accross i t ( M ^ M 1 ) . The frequency of the contact spring 

connecting M^ and M̂  w i l l be proport ional to 

(K/At£) MJ/M 
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Large rat ios M^/MT w i l l , require reductions in the computational t ime-

step. 

For high v e l o c i t y impact in which la rge contac t pressures are 

produced, the contact s t i f fness may have to be scaled up by changing 

the d e f a u l t value of k in eqn. (4.69), i n order to avoid unacceptabiy 

large penetrations. This would again require a corresponding reduction 

of the computational t ime-step. 

A p p l i c a t i o n of eqns. (4.68) requ i res d e f i n i t i o n of a normal to 

the contact. For th i s purpose, contacts are c l a s s i f i e d as node-node or 

node-side ( f i g . 4.7). For node-side c o n t a c t s , the normal i s d i r e c t l y 

tha t of the t a r g e t s ide . For node-node c o n t a c t s , the normal i s 

computed by averaging those from the two adjoining sides. 

F i n a l l y l i e s the quest ion of d i s t r i b u t i n g the con tac t f o rce on 

t a rge t and i n t r u d i n g sur faces . On the i n t r u d i n g sur face the sole 

r e c i p i e n t is always the i n t r u d i n g node, but f o r the t a r g e t s ide 

force d i s t r i bu t i on depends on whether contact is of node-node or node-

side type. For node-node contac ts the i n t e r f a c e f o r ce is assigned 

e n t i r e l y to the t a r g e t node. For node-side con tac ts the i n t e r f a c e 

fo rce i s d i s t r i b u t e d to the two nodes in the t a r g e t s i d e , i n inverse 

proportion to t he i r distance to the in t rud ing node. 

A f l o w c h a r t of the computat ions f o r de te rm in ing the normals , 

penetration and contact forces is given in f igure 4.8. 

4 .8 .2 CONTACT DETECTION ALGORITHM 

Detect ion of new contac ts and book-keeping f o r the l i s t s of 

act ive contacts must be performed in an e f f i c i e n t and re l i ab le way to 

provide robust models for impact and s l i d i ng . In the present 2-D model 

a contact is established and kept i f the in t rud ing node e i ther 

a) penetrates the target side (non-zero in te rac t ion force) 

b) projects on the target side without penetrat ing, l y ing in e i ther of 

the node-side or node-node areas ( f i g 4.7) (zero in te rac t ion force) 
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Intruding Node: P 
Target Node: A 
Normal & Tangential 
vectors: n, t 
(average adjoining sides) 

Intruding Node: P 
Target Nodes: A,B 
Normal & Tangential 
vectors: n, t 

Old vectors: t 0, n Q 
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avge. vectors: 
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C = new Cell 
avge. vectors: 
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Normal penetration Ad| = (-d2n<? 
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rA = AP-AB/(AB-AB) 

FA = -F rA 

FB = -F ( l - r A ) 

Apply force to A: 

FA = -F 

J RETURN 

FIGURE 4.8: SUBROUTINE CONFOR 

(FLOWCHART) 

CALCULATION OF CONTACT PENETRATION AND INTERFACE FORCES 
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A comple te ly general c a p a b i l i t y f o r automat ic de tec t i on of new 

c o n t a c t s ( i . e . any node of any e x t e r n a l s u r f a c e w i t h any o t h e r 

sur face) would genera l l y ca r r y an excessive comput ional overhead. Two 

i n te rmed ia te procedures have been implemented here f o r the de tec t i on 

of c on t ac t s : 

- New i n t e r a c t i o n s near an e x i s t i n g c o n t a c t w i l l be d e t e c t e d 

a u t o m a t i c a l l y , by c h e c k i n g i n every s tep t he n e i g h b o u r s t o a l l 

e x i s t i n g c o n t a c t s . E lement a d j a c e n c y l i s t s are kep t i n t h e p rogram 

memory f o r t h i s purpose. A l l con tac ts w i t h i n one i n t e r f a c e area w i l l 

be p i c k e d up by g i v i n g j u s t one seed c o n t a c t . A c o n t a c t search 

a l g o r i t h m has been inc luded which f i n d s the c o r r e c t t a r g e t s ide from 

an i n c o r r e c t guess. 

- For Automatic de tec t i on of new c o n t a c t s , areas t h a t may touch at an 

unknown i n s t a n t may be earmarked by s p e c i f y i n g l i s t s of nodes, which 

w i l l be checked against each other f o r con tac t at each t i m e - s t e p . In 

f a c t , t hese areas may encompass the who le e x t e r n a l boundary of t h e 

bodies i nvo l ved , i f the l o c a t i o n of con tac ts is t o t a l l y unp red i c tab le 

beforehand, a l though t h i s w i l l normal ly ca r r y a la rge overhead in the 

computat iona l cos ts . 

S l i d i n g of e x i s t i n g contac t areas i s achieved by check ing , p r i o r 

t o r e l i n q u i s h i n g a non-ac t i ve c o n t a c t , i f the i n t r u d i n g node has s l i d 

t o any of the ne ighbour ing t a r g e t s ides . 

F low-char ts f o r the con tac t c a l c u l a t i o n s w i t h the search and the 

book-keeping l og i c are given in f i g u r e s 4.9 and 4 .10 . 

4 . 9 HEAT CONDUCTION 

Heat f l o w rates accross the cont inuum are computed from Four ie r ' s 

1 aw: 

h n + 1 / 2 = KTn.j (4 .72) 

where h^ i s t he r a t e of heat f l o w i n d i r e c t i o n i per u n i t normal 

su r face , K the c o n d u c t i v i t y , and 1" the tempera ture . An e x p l i c i t Euler 
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START 

existing contacts /CONZON) 
- still valid? (search)' 
- contact forces (CONFOR) 

check neighbour Nodes 

(NEIGHB) 

check 
neighbours 

(NEIGHB) 

check 
new contacts from 
lists (CONDEC) 

check 
neighbours 

(NEIGHB) 

RETURN 

Figure 4.9: Subroutine CONTAC, driver for Contact calculations 

(Flowchart) 
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Node P 
intruder 

pick side AB 
on target Cell 

Compute penetration 
and interface forces 

(CONFOR) 

Figure 4.10: CONZON subroutine - check and search for contacts 

(Flowchart) 
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forward in tegrat ion scheme is impl ied in eqn. (4.72). 

For a smal l region the ra te of heat i n f l o w i n t o i t may be found 

by in tegrat ing over i t s surface S, 

Hn+l /2 = . T K T ^ n-jdS (4.73) 

S 

which may be par t i cu la r ized for a t r iangu la r or tetrahedral ce l l as a 

sum over the ce l l faces: 

m 

H = (1/m)) K j S j ( T j - T ) / ( d j - d ) (4.74) 

j = l 

where m = no. of sides (3 t r i a n g l e , 4 tetrahedron) 

KJ, SJ are the conduct iv i ty and surface of side j 

dJ ,TJ are the height of and temperature at the ce l l adjoining j 

d, T are the height and temperature at the current c e l l . 

For boundary faces, the cont r ibut ion to the sum in eqn. (4.74) is 

calculated according to the appropriate boundary condi t ion: 

- D i r i ch le t Te = Const., H j = mK(Te-T)S j/d (4.75) 

- Neumann he = Const., H j = heS j (4.76) 

- Mixed Te/CT + he/Cn = 1 , H j = mKSJ' (CT-T)/(d+KmCT/Ch) (4.77) 

Other sources of heat such as p l a s t i c work must be cons idered 

when f o r m u l a t i n g the energy balance (eqn. 2.32), to compute the 

temperature increments in each c e l l : 

AT = [(HAt +£(j:AePVC)//>VC + AQJ/Cp (4.78) 

where: ^de f i nes the amount of p l a s t i c work t rans fo rmed to heat , 

(defaulted to 0.95) 

\ r is the ce l l volume 

p is the mass density 

A0, is heat generated from other sources per un i t mass 

Cp is the speci f ic heat 



f o r an Euler fo rward t ime i n t e g r a t i o n scheme (eqn. 4.72), 

computat ions are c o n d i t i o n a l l y s t a b l e . For a rec tangu la r mesh, the 

c r i t i c a l t ime-step for s t a b i l i t y is (Richtmyer and Morton, 1967): 

Atc = (1 /2) (1 /Ax 2 + l M y 2 ) / ( K / p C p ) (4 .79a) 

For t r iangu lar and tetrahedral meshes, empir ical resul ts obtained in 

th i s work suggest the fo l lowing c r i t i c a l t ime-steps. 

- Tr iangles: Atc= ( l / 8 ) h 2
i n / (K/pCp) (4.79b) 

- Tetrahedra: 4 t c= ( l / 1 2 ) h £ i n / ( W p ) (4.79c) 

4.10 ENERGY COMPUTATIONS 

E x p l i c i t schemes such as c e n t r a l d i f f e r e n c e are o n l y 

c o n d i t i o n a l l y s t a b l e . In a l i n e a r system, an i n s t a b i l i t y i s r e a d i l y 

detected, as i t w i l l cause overflow in the computations w i th in a few 

cycles. Unfortunately, t h i s is not the case generally for non-l inear 

m a t e r i a l s . I n s t a b i l i t i e s are assoc ia ted w i t h spur ious re lease of 

energy. P l a s t i c m a t e r i a l s may absorb the spur ious energy through 

p l a s t i c de fo rma t i on , whereby i n s t a b i l i t i e s could go unnot iced even 

though la rge e r ro r s may be present . An energy balance check (as 

recommended by Belytschko (1978, 1983)) has been implemented in order 

to detect "arrested" i n s t a b i l i t i e s . 

At every ins tan t , Energy balance dictates 

Wlnt + u K i n " wExt = ° ( 4 - 8 0 ) 

For checking eqn. (4.80), W I n t ( i n t e r n a l energy) , U|<in ( k i n e t i c 

ene rgy ) and W f r x t ( e x t e r n a l ene rgy ) are f o l l o w e d d u r i n g t h e 

computations. The algorithms for these energy computations are given 

below. Note that some energy components are computed incremental ly , 

Wn+1 = Wn +AW n + 1 / 2 

while for others the t o ta l value W" is recomputed at each step. 
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Internal Energy 

I n te rna l energy is composed of cont inuum energy ( I ) , damping 

energy ( I I ) , and energy in the contacts ( I I I ) : 

Wmt = WI + W I I + W I I I ( 4 - 8 1 ) 

- Continuum energy is computed incrementally as 

NUMNOD 

AW?+1/2 = (4t/2)/(an+0n+1):dn+1/2dV = (l/2)^^uS+1/2(PJi+P|5+1) (4.82) 
N=l 

Where P are the nodal f o r c e s , obta ined by i n t e g r a t i n g the cont inuum 

stresses (eqn. 4.9). For e l a s t i c - p l a s t i c m a t e r i a l s the cont inuum 

energy may be decomposed in to e las t i c and p las t i c components: 

Wj = W^-j + Wp-j 

AWgf1 /2 = ( A t / 2 ) / ( < j n + ( j n + 1 ) : ( d P ) n + 1 / 2 d V 

( 4 . 8 3 ) 

AUl\1'2 = Ut/2)J(an+0-n+1):(dE)n+1/2dV 

For an i s o t r o p i c e l a s t i c Von Mises model the express ion f o r the 

p las t i c work may be s imp l i f i ed to 

AWpf1/2 = (At/2) / ( a[!q+ agj1) ePdV (4.84) 

where ae q = y (3 /2 )s : s (Von Mises equivalent s t ress ) . 

- Damping energy increments are computed as 

NUMNOD 

A^112 = (1/2)) Aujj+1/2CAMNujj+1/2 + (PR+1-PR)B/2Zitj (4.85) 
N=l 

- Energy at con tac ts cons i s t s of p o t e n t i a l energy s to red plus 



dissipated fr ict ional energy: 

NUMCON 
WIII = d / 2 ) X Z CKĵ (d̂ )2 + K ^ ) 2 j + WPM (4.86) 

J=l 

^ n
F r i = FJj (d§ 0 - d

n
s) 

where d^ 0 -d§ represents the s l i p (p red i c ted minus co r rec ted shear 

d isp lacement ) . Subscr ip t N here i n d i c a t e s Normal (pene t ra t i on or 

s t i f f ness ) 

NUMNOD 

(1/8)]P] (ufi+1/2+ ^ ~ 1 / Z ) \ (4-87) 
N=l 

NUMNOD 

( 1 / 2 ) ) AUN(FJ) + F[j+1) (4.88) 

N=l 

For computations carried out on a CRAY-IS with around 10$ time-steps 

and 500 cel ls , the errors in matching energy balance (eqn. 4.80) have 

normally been lower than 0.005%WExt. The same computations on a 

VAX11/785 have had errors lower than 0.15%WEXf 

4.11 IMPLEMENTATION INTO FORTRAN PROGRAM 

The algorithms described in this chapter have been implemented 

into a Fortran77 computer program (Goicolea, 1985a). The program 

contains some addit ional f a c i l i t i e s not described here, such as rod 

elements (e.g. for modelling bo l ts , reinforced or prestressed 

concrete). Some e f f o r t was taken to make the program u s e r - f r i e n d l y , 

allowing a f l e x i b l e structure for the input , f ree format command 

interpretation, some mesh generation f a c i l i t i e s , and sensible defaults 

for non-specified parameters. User-friendliness was important for two 

reasons: 

Kinet ic energy 

uKin 

External work 

AWExt 



- The program has been used as a p roduc t ion code f o r n o n - l i n e a r and 

impact eng ineer ing analyses (e.g. P r i n c i p i a Mechanica Ltd. (1983) , 

Dostal, Phelan and Trbojevic (1985)) 

- Extensive a p p l i c a t i o n of the program has been done w i t h i n t h i s 

thesis (Chapters 5 ,6 ,7) . 

A res tar t f a c i l i t y is ava i lab le , which permits the computations 

to be recommenced from predetermined "saved" instants . I t also allows 

recovery from a system crash or forced ha l t . 

Output f i l e s w i t h h i s t o r i e s of moni tored v a r i a b l e s , deformed 

geometr ies, and s t r e s s / s t r a i n components f o r contour p l o t t i n g are 

produced. These f i l e s can be input to post-processors such as PR2DPL 

(Goicolea, 1985b), CURVA (Goicolea, 1985c) and PRISM ( P r i n c i p i a 

Mechanica L t d . , 1984). PRISM can a lso act as a pre-processor 

generating meshes. 

Program development was done i n i t i a l l y on a CDC7600 and la te r on 

a CRAY-IS of the U n i v e r s i t y of London. Minor par ts of the code have 

been v e c t o r i z e d f o r t h e CRAY, but a more t h o r o u g h e f f o r t i n 

vector izat ion was not considered necessary f o r the present research 

work. As i t i s , the performance i s about 15000 c e l l s X c y c l e per CPU 

second. On a CDC7600 the program w i l l run approximately 50% slower, on 

a PRIME750 40 times slower, and on a VAX11/785 20 times slower. 

D e f i n i t i o n of the p r o b l e m , t i m e - c y c l e c o m p u t a t i o n s , and 

rede f in i t i on may be speci f ied in a f l e x i b l e way w i th in cer ta in rules 

(e.g. ma te r i a l p r o p e r t i e s and mesh must be def ined before the t i m e -

cycle computations). A typ ica l problem sequence is indicated in f i g . 

4.11. The f low-char t for the t ime-cycle computations is given in f i g . 

4.12. 



START 

104 

- Geometry (Mesh) 
- Material Properties 

Define Problem - Boundary Conditions 
- Contact properties 
- Thermal properties 

Define Monitoring Requests 

Calculate time-step At, Masses, External Faces, ... 

— 

Redefine 
Problem 

Time-cycle computations 

1 
Save Restart Files 

f 
Output: Printer Plots, Output Files,... 

STOP 

Figure 4.11: Typical sequence for explicit numerical modelling job 
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5.1 INTRODUCTION 

The p u r p o s e o f t h i s c h a p t e r i s t o p r e s e n t a number o f 

r e p r e s e n t a t i v e benchmark t e s t s , v a l i d a t i n g t h e F i n i t e D i f f e r e n c e 

techniques used in t h i s work. Most of the t e s t s have been chosen w i t h 

a v a i l a b l e a n a l y t i c a l s o l u t i o n s t o compare w i t h , but f o r some t h e 

comparison can only be done w i t h o ther numerical r e s u l t s repor ted in 

the l i t e r a t u r e . 

The f e a t u r e s t e s t e d conce rn p r i m a r i l y t h e El a s t i c - P I a s t i c 

mechanical behaviour of con t inua . This inc ludes main ly dynamic t e s t s 

(bo th w a v e - p r o p a g a t i o n and i n e r t i a - d o m i n a t e d t y p e s ) , a l though some 

q u a s i - s t a t i c p rob lems are a l s o s o l v e d u s i n g dynamic r e l a x a t i o n . A 

s i m p l e heat c o n d u c t i o n t e s t p r o v i d e s a check f o r t he t h e r m a l 

c a p a b i l i t i e s . 

No t e s t s are presented f o r thermo-mechanical coupled problems, as 

f u r t h e r a p p l i c a t i o n work on t h e t o p i c was not done f o r t h i s t h e s i s . 

This leaves some scope f o r f u r t h e r work on the ma t te r . 

5.2 WAVE PROPAGATION 

A few examples of wave propagat ion problems are given here. The 

f i r s t th ree concern the propagat ion of waves along a bar in response 

t o the sudden a p p l i c a t i o n of a body f o r c e . An example of t h e 

t ransmiss ion of waves in an E l a s t i c - P l a s t i c ma te r i a l w i t h hardening i s 

given next . F i n a l l y , the behaviour of s t ress waves in a con ica l bar i s 

examined w i t h an i l l u s t r a t i v e example. 

5.2.1 ELASTIC WAVES IN BARS 

Three p rob lems are p r e s e n t e d i n t h i s s e c t i o n c o n c e r n i n g t h e 

p r o p a g a t i o n o f e l a s t i c waves i n b a r s . The bar d i m e n s i o n s are i n a l l 

cases lmxlmx20m, and the common mesh u t i l i z e d in the analyses cons i s t s 

o f 20 q u a d r i l a t e r a l s o f l m x l m ( f i g . 5.1) (each q u a d r i l a t e r a l i s 

composed of 2 t r i a n g l e s ) . The mate r ia l p r o p e r t i e s are as f o l l o w s : 
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Figure 5.1: Mesh used for models of wave propagation in bars 
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Density P = 2000 Kg/m° 

Elast ic modulus E = 1320 MPa 

Poisson's ra t i o v = 0.31 

The bars are i n i t i a l l y at res t , s t ress- f ree and f ixed at one end. 

A body fo rce ( g r a v i t y ) of u n i t value i s then app l i ed suddenly. This 

creates a wave pa t t e rn as the pulse rebounds and t r a v e l s back and 

fo r th along the bar. The period of t h i s wave is 

T = 4L/c (5.1) 

where L i s the leng th of the bar and c the v e l o c i t y of p ropaga t ion . 

The maximum point ve loc i ty attained should be 

v = gL/c (5.2) 

where g is the gravi ty force appl ied. 

Constrained P-waves 

I f the nodes are constrained to move only para l le l to the axis of 

the bar and in plane s t r a i n , the ve loc i ty of propagation is that of a 

plane compressional wave in an i n f i n i t e medium: 

cp =V(A+2G)//3 (5.3) 

= 966.2 m/s 

Theoret ica l and numerical r e s u l t s showing the ve loc i ty h is to r ies at 

the free t i p and mid-point of the bar are presented in f i g . 5.2. 

Unconstrained P-waves 

In t h i s case the bar i s a l lowed to expand l a t e r a l l y , being 

modelled in plane s t r e s s . The wave v e l o c i t y i s t ha t of a one-

dimensional bar, 

c0 =VE/P (5.4) 
= 811.5 m/s 



no 

The resulting velocity histories are given in fig. 5.3 

Shear waves 

The body fo rce w i l l now be normal to the ax is of the bar. To 

prevent bending from deve lop ing , the nodes are cons t ra ined in the 

longi tudinal d i rec t i on ; t h i s way, the d i s to r t i on is resisted only by 

shear stresses. The ve loc i ty of wave propagation i s : 

Cs =-JGJP~ (5.5) 
= 500 m/s 

Results for t h i s case are given in f igure 5.4. 

5.2.2 ELASTIC-PLASTIC WAVES 

Let an unconstrained rod of E las t i c -P las t i c mate r ia l , w i th l inear 

s t r a i n - h a r d e n i n g , impinge norma l l y upon a r i g i d f l a t a n v i l , g i v i n g 

r i se to a s t ress h igher than the y i e l d value Y. An E l a s t i c and a 

Plastic wave are or ig inated and propagate simultaneously through the 

mater ia l , the theoret ica l solut ion to th i s problem has been discussed 

by Johnson (1972). 

The bar is again of dimensions lmxlmx20m, and the same mesh from 

f i g . 5.1 is used. The remaining parameters are: 

Elast ic modulus E = 6400 Pa 

Yield stress Y = 40 Pa 

Mass density P = 1 Kg/m3 

E las t ic -P las t ic modulus H = 640 Pa 

Impact ve loc i ty v = 1 m/s 

The e las t ic wave w i l l t ravel at a speed of 

c 0 = -y]l/P = 80 m/s 

while the Plast ic wave lags behind with a ve loc i ty of 
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c l =VH/P = 25.3 m/s 

The Elast ic wave is ref lected from the free end as an unloading wave. 

As i t returns along the bar i t w i l l meet the oncoming p las t ic f ron t at 

a c e r t a i n i n s t a n t t i » a t a po in t de f ined by i t s d is tance from the 

impacting end, x-^: 

t]_ = 2L/(c0+c1) = 0.38s 

X! = UC-L/COJ/U+C-L/CQ) = 9.61m 

From th i s point e las t ic waves are re f lected back in to each part of the 

bar ; these waves con t inue t o t r a v e l and rebound succes i ve l y . The 

p las t ic strains extend only to the region x<x^. 

In the ca lcu la t ions , appreciable p l a s t i c s t r a i n s occurred only 

fo r the f i r s t 10m of the bar, as p r e d i c t e d . A t ime h i s t o r y of s t ress 

at a d is tance x = 4.67m is shown in f i g . 5.5. This po in t sees the 

passage of the e las t ic f r on t , and then the p las t ic f ron t . Af ter tha t , 

e las t ic rebounds create fur ther f ron ts . 

5.2.3 ELASTIC WAVES IN CONE 

Experiments on c o n i c a l l y - t a p e r e d Hopkinson bars show t h a t 

compressive stress-waves create a tension t a i l , which makes the bar 

move backwards as the t ime -p i ece i s thrown o f f . Landon and Quinney 

(1923) f i r s t analyzed th i s phenomenon, assuming an exponent ia l form 

for the applied pressure pulse, typ ica l of an explosive charge. Kolsky 

(1953) has presented the theoret ica l analysis in a revised form. The 

pulse is given by a displacement law of the form 

u = ( A / r ) e x p [ ( - r - c o t ) / B J " ( A / r ) t 5 - 6 ) 

where r i s the d is tance from the apex of the cone and t the t i m e . t=0 

corresponds to the a r r i v a l of the head of the pulse at the apex, t 

being negative wh i l s t the pulse is t r a v e l l i n g towards the apex. Eqn. 

(5.6) holds f o r negat ive values of t , where r > / c o t j . For r < l c o t l 
the displacement is zero. B is the charac te r is t i c length of the pulse, 
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wh i le A def ines the ampl i tude , co i s t h e b a r w a v e v e l o c i t y (eqn. 
(5 .4 ) ) . 

The stress associated with th i s pulse i s : 

a= - (AE/Br )exp[ ( - r -co t ) / B - l + (AE/r2) j ; 1_ e Xp[(_ r_ c 0 t )/B J (5.7) 

The right-hand side of eqn. (5.7) consists of two opposing sign terms, 

the f i r s t always negative (compressive f ron t ) and the second pos i t i ve 

(tension t a i l ) . The fo l low ing may be noted: 

- the peak compressive s t ress increases as the wave approaches the 

apex (proportional to -AE/Br); 

- the length of the compressive port ion decreases correspondingly; 

- a tens ion t a i l i s l e f t , which s u f f i c i e n t l y behind the head of the 

pulse approaches AE/r2 in magnitude. 

A conical bar of end rad i i 6mm and 60mm, and length 2000mm, was 

modelled numerically wi th a graded mesh of 4x150 quadr i la tera ls ( f i g . 

5.6). Ma te r i a l p rope r t i es were t y p i c a l of Aluminium (E = 67Gpa, 

P=2700Kg/m3s CQ=4981m/s). The pulse inpu t was given as a v e l o c i t y 

h i s t o r y at the wide end, der ived from eqn. (5.6). Ampl i tude of the 

pulse was A=1.3382xl0-4m2, and the length B=0.300m. 

The numerical r e s u l t s compare we l l w i t h the a n a l y t i c a l s t ress 

p r o f i l e s ( f i g . 5.6). P r e d i c t a b l y , the ex t remely sharp peak at the 

wave f r o n t i s b lun ted somewhat, and some d i spe rs i on is in t roduced 

behind i t . Part of th i s is a t t r i bu tab le to the surface waves produced 

in the axisymmetric model. 

5.3 VIBRATION OF A CANTILEVER 

The motion of a v i b r a t i n g c a n t i l e v e r i s a problem t h a t may be 

r e a d i l y checked w i t h e l a s t i c beam t h e o r y . A mesh of 4x21 

quadr i la tera ls is used to model a ver t i ca l cant i lever clamped at the 

top end ( f i g . 5.7a). I t i s set in motion by g i v i n g the bottom r i g h t 
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hand node a v e l o c i t y , of lOm/s d u r i n g 0.05ms. I t i s t hen l e f t t o 

v i b r a t e du r ing 1ms. Ma te r ia l p rope r t i es are 

Densi ty p = 7720 Kg/m3 

E l a s t i c modulus E = 213.4 GPa 

Poi sson 's r a t i o ' ; = 0.311 

F i g u r e s 5.7b and 5.7c show t h e maximum p o s i t i v e and n e g a t i v e 
d isp lacements , exagerated 10 t i m e s . Displacement h i s t o r i e s of po in ts 

a t t h e t i p and m i d d l e of t h e beam ( f i g . 5.8a) show t h e dominance of 

t h e f l e x u r a l f u n d a m e n t a l mode of v i b r a t i o n i n t he response . Th i s i s 

a lso notab le in the frequency spectrum at the t i p , shown in f i g . 5.8b, 

where the f i r s t t h ree ( t h e o r e t i c a l ) na tu ra l f requenc ies of a f l e x i o n -

only beam are shown as we l l f o r compar ison. For the f i r s t f requency, 

t h e c o i n c i d e n c e w i t h t h e t h e o r e t i c a l v a l u e i s r e m a r k a b l e . Some 

d i s c r e p a n c y e x i s t s f o r t h e second and t h i r d modes. T h i s i s e x p e c t e d 

f r o m t h e f a c t t h a t t h e t h e o r e t i c a l f r e q u e n c i e s do not t a k e i n t o 

accoun t shear or f i n i t e d e f o r m a t i o n e f f e c t s . Th is p r o b l e m has been 

a n a l y z e d p r e v i o u s l y by Wi1 k i n s (1969) w i t h s u b s t a n t i a l l y t h e same 

r e s u l t s as here. 

5.4 STATIC ELASTIC-PLASTIC PROBLEMS 

Two c l a s s i c a l p r o b l e m s of s t a t i c p l a s t i c i t y are s o l v e d i n t h i s 

sec t i on . As discussed in sec t i on 4 . 1 , the e x p l i c i t F i n i t e D i f f e rence 

code lacks the a b i l i t y t o per form s t a t i c ana lys is d i r e c t l y . The s t a t i c 

s o l u t i o n s are reached through dynamic r e l a x a t i o n . The v i b r a t i o n s are 

damped ou t w i t h t h e use of v i s c o u s damp ing , and t h e f o r c e s (or 

d i s p l a c e m e n t s ) a re a p p l i e d g r a d u a l l y . Some " o v e r s h o o t " i n t h e 

s o l u t i o n s i s u n a v o i d a b l e f o r p l a s t i c m a t e r i a l s , a l t h o u g h i t can be 

minimized by proper use of damping and slow load ing r a t e s . 

5 .4 .1 PUNCH TEST 

The case of a s e m i - i n f i n i t e body indented by a f r i c t i o n l e s s , f l a t 

r i g i d punch, under c o n d i t i o n s of plane s t r a i n , was solved o r i g i n a l l y 

by P r a n d t l (1920) , u s i n g shear l i n e t h e o r y . The p l a s t i c c o l l a p s e 
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pressure i s constant and equal t o 

p = l(Z+n )/ V^J Y = 2.97Y (5 .8 ) 

Numer i ca l l y , the ha l f - space is d i s c r e t i z e d r a t h e r c r u d e l y ( f i g . 

5.9), mode l l i ng only a f i n i t e rec tangu la r p o r t i o n , w i t h d isp lacements 

at the boundary cons t ra ined in both d i r e c t i o n s . Prescr ibed v e l o c i t i e s 

are given to the nodes under the d i e . The ma te r i a l p rope r t i es are 

E l a s t i c modulus E = 10U Pa 

Poisson 's r a t i o v = 0.3 

Y i e l d s t ress Y = 0.01 Pa 

For t h i s p r o b l e m , a mesh of c o n s t a n t s t r a i n t r i a n g l e s does not 

g ive a s a t i s f a c t o r y r e s u l t . Not only does i t ove res t ima te the co l l apse 

pressure , but the load grows mono ton i ca l l y , f a i l i n g to achieve a l i m i t 

v a l u e ( f i g . 5 .9) , i n d i r e c t c o n t r a v e n t i o n of t h e l i m i t t heo rems o f 

p l a s t i c i t y . The reason fo r t h i s is the inadequacy of these meshes to 

model incompress ib le p l a s t i c f l o w , as discussed in sec t i on 3.7.1. 

The Mixed D i s c r e t i z a t i o n p r o c e d u r e s advocated here ( s e c t i o n s 

4 .2 .2 , 4.2.3) do p r o v i d e a s a t i s f a c t o r y s o l u t i o n ( f i g . 5.9). The 

s l i g h t o v e r e s t i ma t i on i s due t o t h e coa rseness of t h e mesh and t h e 

t o t a l c o n s t r a i n t at the boundar ies. This problem was solved us ing the 

CMTl) q u a d r i l a t e r a l s proposed in sec t i on 4.2.3, thus prov ing t ha t the 

m o d i f i c a t i o n s in t roduced in these to prevent negat ive volumes do not 

s t i f f e n t hese e l e m e n t s up f o r o r d i n a r y s i t u a t i o n s w i t h s m a l l or 

moderate s t r a i n s . 

To a c h i e v e t h e s o l u t i o n , a r e l a x a t i o n p rocess was used. Mass 

dens i t y ( f i c t i t i o u s ) was taken as 0.1 Kg/m3, and f u l l Rayle igh damping 

was used, w i t h 1% of c r i t i c a l damping at 1 Hz. The r e l a x a t i o n process 

was f o l l o w e d f o r 10 seconds (458 s teps) . The p resc r ibed v e l o c i t i e s at 

the d ie were app l ied g radua l l y dur ing the f i r s t second. 
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5.4.2 ELASTIC-PLASTIC SPHERE UNDER INTERNAL PRESSURE 

When a t h i c k - w a l l e d spher ica l vessel i s sub jec ted to growing 

internal pressure, a p las t ic zone s tar ts to develop from the i n t e r i o r . 

There i s a range of pressures f o r which conta ined p l a s t i c f l ow is 

achieved, d e f i n i n g a p l a s t i c zone and an e l a s t i c outer zone. The 

t h e o r e t i c a l s o l u t i o n (e.g. _ H i l l , 1950) def ines the rad ius c of the 

p las t ic zone from \A» ^ f 

p = 2YLn(c/a) + (2Y/3)( l -c3/b3) (5.9) 

where p i s the pressure , a the i n t e r n a l r a d i u s , and b the ex te rna l 

radius. 

The stresses in the e las t i c zone (c<r<b) are given by 

,5 / , 1 
a = -(b3/r3-l)2Yc3/3b3 r - L^ f* (A . -i) 

ae = (b3/2r3+l)2Yc3/3b3 „ ? Vc i kl + A) 

and in the p las t i c zone (a<r<c) by 

" r = -2YLn(c/r) - 2Y( l - c 3 / b 3 ) / 3 

ae = Y + ^ r 

(5 . io ; 

(5.11) 

Numer ica l ly t h i s problem was solved d i s c r e t i z i n g a 30 deg. 

ax isymmetr ic sec to r , w i t h a mesh of 10x8 CMTQ q u a d r i l a t e r a l s ( f i g . 

5.10a). The material parameters were 

Elast ic modulus E = 1 

Poisson's ra t i o v = 0.2 

.Yield strength Y = 0.83588xl0"3 

Density p = 1 

With a = l , b=2 and an app l ied pressure of p=10-3, the p l a s t i c zone 

extends to c=1.5 exactly (eqn. 5.9). The calculated p ro f i l es of radial 

and hoop st resses ( f i g . 5.10b) show an e x c e l l e n t agreement w i t h 

theory . Only a smal l d i f f e r e n c e i s present in the peak of the 
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c i rcumferent ia l stresses at the p las t ic boundary, due to the crudeness 

of the mesh and the stepwise representation of stresses in the model 

(constant s t r a i n e lements) . As a check, c a l c u l a t e d c i r c u m f e r e n t i a l 

stresses in the sphere are provided in both in-plane and out-of-plane 

d i rec t ions , showing excel lent agreement. 

To achieve the s o l u t i o n , a dynamic r e l a x a t i o n process was 

f o l l owed f o r 40s, w i t h mass damping 50% of c r i t i c a l at 0.08 Hz. (782 

s teps) . The load was increased g radua l l y to i t s f i n a l value in the 

f i r s t 30s. 

5.5 HEAT CONDUCTION 

The numerical procedures descr ibed in chapter 

c a p a b i l i t y of per fo rming pure ly mechan ica l , pure ly 

simultaneous coupled thermo-mechanical ca lcu la t ions . 

5.5 .1 COUPLED THERMOMECHANICAL ANALYSIS 

The complexity of the mathematical descr ipt ion of general coupled 

thermomechanical systems, in which the heat i s generated by p la j t i c 

f low, accounts for the fact that analy t ica l solut ions are not readi ly 

a v a i l a b l e in t h i s f i e l d . As on the o ther hand thermomechanical 

appl icat ions were not intended for t h i s work, no va l ida t ion example is 

presented here as such. 

However, the mathematical model fo r thermomechanical coupling has 

been der ived and implemented by the au thor , both in the 2-D program 

developed f o r t h i s t h e s i s , and in an e x i s t i n g 3-D program ( M a r t i , 

1981, 1983). A 3-D a p p l i c a t i o n of t h i s work has been pub l ished 

elsewhere.(Mart i , Goicolea, Kalsi and Macey, 1984), which concerns the 

ex t rus ion of an a luminium disk w i t h an i r r e g u l a r d i e . Very severe 

p last ic d is to r t ions are achieved in the process, producing increases 

in temperature. 

4 have the 

t h e r m a l , or 



5.5.2 TEMPERATURE REDISTRIBUTION IN A SLAB 

A the rma l -on l y ana lys is is performed f o r an i n f i n i t e s l a b , 

i n i t i a l l y at a uniform temperature T=l , and cooled down by keeping the 

ends x=-L and x=L at T=0. The problem parameters are 

half thickness 

Conductivity 

Density 

specific heat 

L = 20 

K = 1 

P = 1 

C p - 1 

Calcu la ted temperature p r o f i l e s for various times are compared 

wi th theoret ica l values in f i g . 5.11, showing excel lent agreement. A 

t i m e - s t e p of 56.25,ms) was used f o r the a n a l y s i s , w i t h a mesh of 40 

t r i a n g l e s . The t h e o r e t i c a l s o l u t i o n was obta ined by Four ie r se r ies 

analysis (e .g . Carslaw and Jaeger (1947), p83). 

5.6 LARGE STRAINS AND ROTATIONS 

A Q u a d r i l a t e r a l sub jec ted s imu l taneous ly to a f i n i t e r i g i d 

r o t a t i o n and a s imple a x i a l e x t e n s i o n ( i . e . l a t e r a l movement 

cons t ra ined) i s considered here. The purpose of t h i s example is 

p r inc ipa l l y to check the ob j ec t i v i t y of the in tegra t ion a lgor i thm. 

The ma te r i a l behaviour is descr ibed by a hypoe las t i c law (eqn. 

4.28), involv ing the Jaumann rate of Cauchy st ress: 

0= C:d (5 .12) 

C a l l i n g 0 ( t ) the r i g i d r o t a t i o n at t ime t , and A( t ) the a x i a l 

stretch ra t io (L(t) /L) in the rotated coordinate frame, the two normal 

s t ress components may be obta ined a n a l y t i c a l l y by i n t e g r a t i n g eqn. 

(5.12): 

29 s i n 2 9 \ I I 

) 

E ( 1 - I > ) L I A / [ ( 1 + P ) ( 1 - 2 I ; ) ] (5.13; 
29 cos29i 

v 
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A f u l l 360 deg. rotat ion wi th a f i na l st retch ra t i o of 2 was performed 

( f i g . 5.12), the numerical r e s u l t s agreeing c l o s e l y w i t h t heo ry . A 

la rge number of t ime -s teps - 1824 - was used f o r the c a l c u l a t i o n , 

which cou ld have been reduced w i t h o u t a f f e c t i n g s i g n i f i c a n t l y the 

accuracy of the r e s u l t s . However, t h i s i s a r e a l i s t i c s i t u a t i o n f o r 

e x p l i c i t ca lcu la t ions, where t ime-steps must be very small fo r reasons 

of s t a b i l i t y . The simple Jaumann rate algor i thm (eqn. 4.52) provides 

e x c e l l e n t r e s u l t s , w i t hou t needing the more r igo rous procedures 

necessary for larger i m p l i c i t steps (Hughes and Winget (1980), Pinsky, 

Ort iz and P is te r (1983)). 

5.7 IMPACT OF CYLINDER 

The impact of a s o l i d c y l i n d e r aga ins t a r i g i d s tonewal l i s a 

problem in which the f i n a l shape i s s e n s i t i v e to the p l a s t i c 

propert ies of the mater ia l . Wilkins and Guinan (1973) used tests and 

numerical analyses of such impacts to ca l ib ra te the p las t i c material 

behaviour. Here, the impact of a copper c y l i n d e r i s descr ibed . This 

problem has been analyzed by H a l l q u i s t w i t h NIKE2D (1979), DYNA2D 

(1982a) and DYNA3D (1982c), and by Johnson (1981). 

Impact v e l o c i t y i s 227m/s. A s imple E l a s t i c - P l a s t i c Von Mises 

idea l iza t ion wi th l inear isot rop ic hardening is used for the mater ia l . 

The dimensions and material parameters are given in f igure 5.13a. 

The mesh comprised 50x5 CMTQ q u a d r i l a t e r a l s and was severe ly 

d i s t o r t e d as a r e s u l t of the impact ( f i g s . 5.13b, 5.13c). The f i r s t 

part of the deformation (40 microsec.) ocassions a f l a t t en i ng of the 

impact end i n t o an e lephant 's f o o t . The l a t t e r par t ( t i l l 80 

microsec.) produces a barre l ing upwards of the bar, as the bottom part 

has become very hardened by then. The cy l inder s ta r ts to rebound a f te r 

79 microsec. ( v e l o c i t y h i s t o r i e s in f i g . 5.14), in agreement w i t h 

H a l l q u i s t ' s r e s u l t s . Note t h a t f o r t h i s problem the nodes at the 

impacting end were f ixed in the axial d i rec t ion . Although a stonewall 

boundary c o n d i t i o n ( p e r m i t t i n g separa t ion ) would have been more 

r e a l i s t i c , the outer edges tend ing to l i f t s l i g h t l y , t h i s s imp le r 

idea l iza t ion was adopted fo r compat ib i l i t y wi th Hal lqu is t 's resu l ts . 
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Results from var ious c a l c u l a t i o n s are presented in t a b l e 5 .1 , 

g i v i ng the deformed l e n g t h , bottom r a d i u s , and maximum e f f e c t i v e 

p l a s t i c s t r a i n (achieved always at the bottom cent re1i ne eel 1). The 

r e s u l t s obta ined here us ing CMTQ or MTQ elements compare we l l w i t h 

H a l l q u i s t ' s r e s u l t s . Mesh d i s t o r t i o n , a l though l a r g e , is q u i t e 

u n i f o r m , and MTQ elements behave we l l here. As p r e d i c t a b l e , the 

response of CST elements i s poor. Also presented in t a b l e 5.1 are 

resul ts from Johnson (1981); two d i f f e ren t types of crossed t r i ang le 

layouts are seen to prov ide b e t t e r r e s u l t s than CST e lements , but 

s t i l l not as good as the Mixed D iscre t iza t ion used here (special ly as 

to maximum p las t i c s t ra in ) . 

L 

R 

^max 
P 

Hallquist(1982a,1982c) 

DYNA2D 

21.47 

7.127 

3.05 

DYNA3D 

21.47 

7.034 

2.96 

NIKE2D 

21.47 

7.068 

2.97 

This work 

CMTQ 

21.45 

7.068 

2.90 

MTQ 

21.44 

7.155 

2.94 

CST 

21.13 

6.061 

1.63 

Johnson(1981) 

XI 

21.61 

7.136 

2.38 

X2 

21.61 

7.040 

2.70 

CST 

21.12 

6.016 

1.34 

Table 5 . 1 : Comparison of resul ts from various calcu lat ions for impact 

of c y l i n d e r (see f i g . 5.13) 

5.8 CONCLUSIONS 

The c a p a c i t y of t h e proposed e x p l i c i t F i n i t e D i f f e r e n c e 

algorithms for modelling E las t i c -P las t i c material behaviour in plane 

and axisymmetric models has been va l idated, wi th a series of s ta t i c 

and dynamic benchmark tes ts . Special a t tent ion has been given to the 

wave propagation and f i n i t e deformation capab i l i t i e s . 



129 

CHAPTER 6 
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6.1 INTRODUCTION 

Experimental and numerical studies of tension tests wi th necking 

i n bars are r e p o r t e d i n t h i s c h a p t e r . The aim i s t o d e r i v e 

c o n s t i t u t i v e laws f o r the a lumin ium ma te r i a l used in the tube 

crumpling analyses (chapter 7). St ress-s t ra in laws va l id for up to 1.5 

s t ra in are necessary for these analyses. 

6 tension tests were car r ied out on HE30 annealed aluminium bars. 

In these t e s t s , a f t e r an i n i t i a l stage of un i f o rm e x t e n s i o n , an 

i n s t a b i l i t y occurs, causing deformations to become loca l ized in a neck 

wi th very large s t ra ins . Reductions in cross-sect ional area of A/AQ _ 

0.26 ( f i g . 6.1), cor responding t o a u n i a x i a l s t r a i n of 1.35, were 

achieved before f rac tu re . 

The s t ress and s t r a i n f i e l d s around the neck are markedly non­

u n i f o r m . Theore t i ca l analyses of these d i s t r i b u t i o n s w i t h some 

empirical basis have been proposed by Bridgman (1952) and Davidenkov 

and Spiridinova (1946). These semi-empirical d i s t r i bu t i ons were used 

here to provide a f i r s t in te rp re ta t ion of the test resu l t s , obtaining 

tenta t ive hardening laws for the mater ia l . 

The tension tests were then modelled wi th the e x p l i c i t numerical 

techniques proposed i n t h i s t h e s i s (chapter 4). C a l c u l a t i o n s were 

performed success fu l l y up t o the la rge neck s t r a i n s observed in 

e x p e r i m e n t , t h e s t r e s s / s t r a i n d i s t r i b u t i o n s o b t a i n e d i n t h e 

c a l c u l a t i o n s conf i rmed in general the v a l i d i t y of Bridgman's and 

Davidenkov's s o l u t i o n s . Load and average s t ress e v o l u t i o n curves 

f i t t e d c l o s e l y the exper imenta l r e s u l t s . With the hardening laws 

obta ined us ing Bridgman's s e m i - e m p i r i c a l i n t e r p r e t a t i o n as a f i r s t 

guess, the computations allowed a fur ther adjustment of the parameters 

to provide a better f i t wi th experiment. 

The fo l lowing terminology is employed in th i s chapter: 

- True (average) s t r e s s , P/A, ax ia l load d i v i d e d by c u r r e n t c r o s s -

section of bar; 

- Natural (or logar i thmic) s t r a i n , Ln(L/Lo)> logari thm of current over 

i n i t i a l length; 
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- Effective plastic strain, ep (eqn. 2.60b) 

- Von Mises equivalent (or effective) stress, 

aeq =y(3/2)s:s (6.1) 

where s is the deviatoric Cauchy stress tensor, eqn. (2.59). 

6.1.1 CONSTITUTIVE IDEALIZATION 

Elas t ic -P las t ic theory has been very successful in describing the 

deformation of metals and provides a good framework on which to bu i ld 

models of ma te r i a l behaviour . A Von Mises y i e l d c r i t e r i o n w i t h 

isot ropic hardening and associat ive p las t i c f low provides a simple and 

robust model f o r non -cyc l i c l o a d i n g , g i v i n g acceptable answers f o r 

most cases. With t h i s choice of cons t i t u t i ve model, r e l i ab le data for 

the e las t ic propert ies may be obtained from the suppl ier , handbooks, 

or s imple t e s t s . The ma te r i a l parameters w i l l be complete w i t h the 

hardening law 1(ep)t which r e l a t e s the y i e l d s t r eng th of the 

mater ia l , Y, to a scalar measure of the p las t i c s t r a i n , the e f fec t i ve 

p l a s t i c s t ra in ep# 

The f l ow s t ress Y i s de f ined by the value at y i e l d of the Von 

Mises equivalent stress: 

Y = °eq (6.2) 

In some special cases, a simple iso t rop ic Von Mises model may not 

represent the ma te r i a l s a t i s f a c t o r i l y . Specialized calcu lat ions for 

we l l de f ined l oca l s t ress s ta tes may requ i re c a r e f u l c o n s i d e r a t i o n 

and/or matching of the load ing c o n d i t i o n f o r the t e s t in which the 

c o n s t i t u t i v e data were der ived (e.g. pure t e n s i o n , pure shear, 

combined loadings). 

I f in such a problem p l a s t i c i t y is confined to a par t i cu la r local 

s t ress s t a t e , a de te rm ina t i on of the y i e l d and f l ow parameters f o r 

that state w i th in an isot rop ic p l a s t i c i t y idea l i za t ion may suf f ice and 

give sat is factory resu l ts . In a general s i tua t ion more sophist icated 

p l a s t i c i t y i d e a l i z a t i o n s (e.g. Mroz (1967,1972), O r t i z and Popov 



(1983)) w i l l be needed, determining the cons t i t u t i ve data by numerous 

t es t s f o r each s t ress o r i e n t a t i o n , at each l eve l of hardening. This 

process requires extensive and d i f f i c u l t experimental work, as well as 

research to assess the appropriateness of cons t i t u t i ve idea l i za t ions . 

Moreover, f o r la rge s t r a i n a n a l y s i s , the e f f o r t i nvo l ved would be 

great ly increased and complicated, wi th uncertain resu l ts . 

In the Concertina tube collapse mechanism, large p las t i c s t ra ins 

are produced under a var iety of stress states. For a global modelling 

of th i s phenomenon an iso t rop ic Von Mises idea l i za t ion is a simple and 

r e l i a b l e i d e a l i z a t i o n , wh ich produces s a t i s f a c t o r y r e s u l t s . 

Add i t iona l ly , w i th t h i s choice of model the cons t i t u t i ve data can be 

determined easi ly from d i rec t measurements in simple tension tes ts . 

Due t o the q u a s i - s t a t i c nature of the problem to be mode l led , 

ma te r i a l ra te e f f e c t s do not need t o be i nc luded . Frac tu re of the 

ma te r i a l i s not necessary in the model e i t h e r , as the annea l ing 

process to which the Aluminium was subjected increased the d u c t i l i t y 

s u f f i c i e n t l y to remove f rac ture from the range of relevant phenomena. 

6.1.2 TENSION TESTS - A REVIEW 

Tension tests have been widely used for determining mechanical 

propert ies of meta l l i c mater ia ls . Standard s p e c i f i c a t i o n s e x i s t f o r 

c a r r y i n g out these t e s t s : ASTM E8-82, ASTM E646-78, BS18. The 

ma te r i a l behaviour can be e a s i l y obta ined from these standard t e s t 

procedures when s t r a i n s are smal l or moderate, i n which case the 

deformations in the tens i le specimen may be assumed uniform (Over the 

cross-section and along the bar). Such is not the case, however, when 

s t r a i n s become l a r g e : the specimen necks and de format ions become 

highly loca l ized, creat ing as a resul t non-uniform stress and s t ra in 

d i s t r i bu t i ons . 

In a t e s t to der i ve the mechanical p r o p e r t i e s of a ma te r i a l 

discrete measurements are taken of forces and displacements, producing 

average values f o r s t resses and s t r a i n s . I f the s t ress and s t r a i n 

f i e l d s can be assumed u n i f o r m , these average measurements prov ide 

d i rec t l y the data for the elementary cons t i t u t i ve laws. However, a l l 
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means of producing large p las t ic deformations involve highly complex 

non-uni form s t ress d i s t r i b u t i o n s . Appropr ia te la rge s t r a i n t e s t 

procedures include tors ion tes ts on tubes or c y l i n d e r s , compression 

tests on cyl inders (in which results must be corrected for ba r re l l i ng 

and f r i c t i o n ) , and tension tests on cy l i nd r i ca l bars or f l a t p lates. 

Tension tests on cy l i nd r i ca l bars were chosen here for the s imp l i c i t y 

in measurements and s u i t a b i l i t y of avai lable equipment. 

The ana lys is and i n t e r p r e t a t i o n of the necking de format ion in 

tension tests is a so l id mechanics problem which has a t t rac ted some 

in te res t . Bridgman (1944, 1945, 1952) and Oavidenkov and Spir idinova 

(1946) were the f i r s t to study t h i s problem in some depth. They 

presented a n a l y t i c a l i n t e r p r e t a t i o n s based on some e x p e r i m e n t a l l y 

confirmed assumptions, which provide s t ress /s t ra in d i s t r i bu t i ons va l id 

in the minimum sec t ion of the neck. The main assumption in both 

Bridgman's and Davidenkov's work i s t ha t the r a d i a l s t r a i n s are 

constant across the minimum neck sect ion. This fact was corroborated 

experimentally by Davidenkov (1946) measuring the average grain sizes 

at d i f fe ren t posit ions and or ientat ions in the neck sect ion. Bridgman 

s i l v e r - s o l d e r e d cores of var ious d iameters i n t o ho l low specimens, 

obtaining a s im i la r conf i rmat ion. Experimental evidence to th i s e f fec t 

has been obta ined here f rom microhardness t e s t s and i s presented 

fur ther down in section 6.3.5. 

Bridgman's and Davidenkov's early work in the in te rp re ta t ion of 

tension tests has represented the state of the ar t for many years. Not 

u n t i l r ecen t l y have minor extensions to t h e i r a n a l y t i c a l work been 

produced (Kaplan (1973), Jones (1979)). 

On another f r o n t , the development of d i g i t a l computers has 

enabled tension tests to be interpreted in a more general form through 

the use of numerical models. The f i r s t general numerical so lut ion was 

obta ined by W i l k i ns (1968) w i t h an ea r l y vers ion of h is HEMP f i n i t e 

d i f f e r e n c e hydrocode, but received l i m i t e d p u b l i c i t y . Fur ther work 

along t h i s l i n e has been repor ted by W i l k i n s (1978), W i l k i n s et al 

(1980), employing tension tests to obtain material idea l iza t ions for 

perforat ion analyses and duc t i le f racture tes t models. Wilk ins car r ied 

out computer calculat ions to corroborate cer ta in assumptions and gain 

a d d i t i o n a l i n f o r m a t i o n on c o n s t i t u t i v e parameters. However, i n the 



i n t e r p r e t a t i o n of the tens ion t e s t s W i l k i ns does not cons ider the 

e f f e c t of the n o n - u n i f o r m i t y of a x i a l s t resses in the neck. He 

acknowledges the er ror , using his simple in te rp re ta t ion to establ ish a 

f i r s t crude guess f o r the ma te r i a l parameters , which are then 

corrected on the basis of the resul ts of numerical ca lcu la t ions. 

Nor r is et a l . (1978) have a lso used HEMP to s imu la te tens ion 

t e s t s . They f o l l o w e d e s s e n t i a l l y the same method as W i l k i n s , 

performing i t e r a t i v e computer analyses to obtain universal f low stress 

curves from the tension test data. They reported t r i a x i a l tensions at 

the specimen axis higher than those predicted by Bridgman (1952). 

A Kantorov ich numerical approach assuming global po lynomia l 

d isplacement f unc t i ons has been proposed by Chen (1971). He used an 

early large s t ra in formulat ion which contains some def ic iencies such 

as l ack of c o r r e c t i o n f o r r i g i d body r o t a t i o n s . The g l o b a l 

displacement f unc t i ons f a i l e d to represent adequately the boundary 

condit ions. A s im i la r large s t ra in formulat ion was used by Needleman 

(1972) w i t h i n a F i n i t e Element con tex t . As Nor r i s (1978), Needleman 

found Bridgman's (1952) solut ion to underpredict the t r i a x i a l tensions 

in the specimen. 

The work presented here uses both t h e o r e t i c a l s t r e s s / s t r a i n 

d i s t r i b u t i o n s and numerical c a l c u l a t i o n s f o r the i n t e r p r e t a t i o n of 

tens ion t e s t s . A n a l y t i c a l r e s u l t s and empir ical cor re la t ions due to 

Bridgman (1952) are f i r s t used to prov ide an i n i t i a l guess f o r a 

un ive rsa l f l ow s t ress curve from s imple tens ion t e s t data. This 

ma te r ia l law i s then fed i n t o the computa t iona l model, and by 

comparing the r e s u l t s w i t h exper iment , the parameters are ad jus ted 

more f i n e l y . The i n t e r p r e t a t i o n based on Bridgman's s e m i - e m p i r i c a l 

r e s u l t s provided w i t h l i t t l e e f f o r t very reasonable guesses for the 

mate r ia l laws , and only minor changes were suggested by the 

c o m p u t a t i o n a l r e s u l t s . On t h e o t h e r hand, t h e s t r e s s / s t r a i n 

d is t r ibu t ions obtained in the calculat ions confirm broadly Bridgman's 

(1952) and Davidenkov's (1946) assumptions. 

Although the numerical approach used by Wilkins (1978) is broadly 

s i m i l a r to the present one (both employ e x p l i c i t f i n i t e d i f f e r e n c e 

codes) ne i t he r he nor Nor r i s et a l . (1978) used any i n t e r p r e t a t i o n of 



the tens ion t e s t data fed i n t o the computer model; the s t ress was 

merely averaged across the neck s e c t i o n . Adjustment of m a t e r i a l 

s t r e s s - s t r a i n law parameters was achieved by i t e r a t i v e computer 

analyses. Here i t was found t ha t the d i f f e r e n c e between the d i r e c t 

average data ( f i g . 6.4) and the ma te r i a l u n i a x i a l s t r e s s - s t r a i n law 

( f i g . 6.7) was considerable for the reductions in area sustained (20% 

dif ference for A/Ao=0#26). An accurate i n i t i a l guess could be obtained 

using a simple semi-empirical i n te rp re ta t i on , thus saving considerable 

computer resources. 

6.2 THEORETICAL INTERPRETATION OF TENSION TESTS 

Tensile tests on cy l i nd r i ca l bars have been used extensively to 

study the mechanical behaviour of metals. For b r i t t l e or low d u c t i l i t y 

metals the s t r a i n and s t ress f i e l d s are approx imate ly un i f o rm 

throughout the t e s t , w i t h smal l reduc t ions in area. Frac ture occurs 

before departing from th i s uniform state. Uni formity is also the case 

f o r a more d u c t i l e m a t e r i a l , when only the de te rm ina t i on of the 

e last ic constants or the y i e l d point is sought. 

Duct i le metals can sustain large p las t ic s t ra ins before f rac tu re . 

The reduction in cross-sect ional area is important, and the or ig ina l 

area (AQ) a n d g a u ge leng th (Lo) no longer prov ide a v a l i d basis on 

which to measure stresses and s t ra ins . In a f i r s t phase of moderate 

reduct ions in area, deformat ions remain u n i f o r m ; t r ue (Cauchy) 

stresses and natural ( logar i thmic) s t ra ins provide a good descr ipt ion 

of the ma te r i a l behaviour. For a u n i a x i a l t e n s i l e t e s t they are 

defined thus: 

where: 

-zz 

ffzz = P/A 

dL/L = Ln(L/L0 ; 

Lo 

!6.3) 

6.4' 

a z z is the true axial stress 

P is the applied axial load 

A is the current cross-sectional area 
ezz is the natural axial s t ra in 
l0 is the or ig ina l gauge length 



L is the current gauge length 

The natural s t ra in keeps a cumulative record of the s t ra in ing in 

each d i rec t ion at a point in the mater ia l , referred at every instant 

to the current conf igurat ion. This descr ipt ion is very convenient for 

the t e n s i l e t e s t , f o r as long as deformat ions remain u n i f o r m , the 

axial stress coincides wi th the Von Mises equivalent stress, and the 

natural axial s t ra in equals the e f fec t ive p las t ic s t r a i n : 

CTeq = °zz ( 6 - 5 ) 

A proof of th i s last assert ion is given fur ther down in section 6 . 2 . 1 . 

A second phase in the t e n s i l e t e s t begins when the specimen 

s t a r t s to neck. At t h i s moment the ma te r i a l hardening no longer 

compensates for the reduction in area, occasioning a decrease in the 

t o t a l a x i a l load. The ma te r i a l t r i e s to harden enough to match the 

applied load, producing local ized deformations in a small neck region, 

to which subsequent p las t i c f low is confined; the rest of the specimen 

unloads e l a s t i c a l l y . A non-un i form s ta te of s t resses and s t r a i n s 

ex is ts , and formulae!(6.4) alone no longer provide a va l id descr ipt ion 

of the t e s t . ( (6.3) 

6.2.1 STRAIN DISTRIBUTION AT MINIMUM NECK SECTION 

From the assumptions of axial symmetry and un i fo rmi ty of radial 

s t ra ins , and considering the symmetry condit ion across the plane of 

the minimum neck s e c t i o n , the ra te of de format ion components (see 

sect. 2.2.3) may be expressed as fo l lows: 

d r r = ^ r = D/D 
r P dr 

4ee
 = I § + " r = 0+0/D = d r r ( 6 . 6 ) 

r dd r 

dro = dtfZ = drz = 0 



where: r, 0 ,z stand f o r r a d i a l , c i r c u m f e r e n t i a l and a x i a l 

d i rect ions respectively 

^ i j are the physical components of the rate of deformation. 

u.j are the displacement components 

D is the diameter 

superposed dots represent material time der ivat ives as usual 

From (6.6) i t may be seeen that un i fo rmi ty of drr impl ies drr a0O 
as w e l l . This f a c t was checked independent ly by Davidenkov(1946) 

measuring grain sizes in both radial and c i rcumferent ia l d i rec t ions . 

In the necking phase e las t ic stra ins are neg l ig ib le so i t may be 

assumed the de format ion i s produced e n t i r e l y by p l a s t i c f l o w . The 

incompress ib i l i ty character is t ic of p l a s t i c i t y in metals permits the 

der ivat ion of the axial rate of deformation component: 

]zz = - 2 d r r = -2D/D ;6.7) 

From eqns. (2.60b), (6.6) and (6.7) the e f f e c t i v e p l a s t i c s t r a i n may 

be expressed as 

.D 

-2(D/D)dt = -2Ln(D/D0) = ezz (6.8) 

Do 
where Do i s t n e o r i 9 i n a l diameter of the bar. 

Thus ep and consequent ly the y i e l d s t reng th Y are constant 
across the minimum neck sect ion. 

This r e s u l t has been cor robora ted experimental ly here wi th the 

help of microhardness measurements, taken on sections of the deformed 

tens i le specimens (sect. 6 .3 .5) . 

6.2.2 STRESS DISTRIBUTION 

From the Levy-Mises p las t ic f low ru le . 

s i j = Xd i j p ( 6 . 9 ) 



where X i s an a r b i t r a r y p o s i t i v e sca la r . Cons ider ing eqn. (6.6) one 

may then wr i t e : 

<7rr =Gee (6.10) 

This equat ion was der ived independent ly by Nadai(1946) from 

solely theoret ica l considerations of a Von Mises y i e l d surface and a 

minimum fo rce p r i n c i p l e . Consider ing the constancy of Y across the 

sect ion, one may also w r i t e : 

Ozz _ Crr = Y (6 .11) 

which is va l i d for a l l points in the sect ion. This stress d i s t r i b u t i o n 

may be interpreted as a uniform axial tension of value Y superposed to 

a va ry ing h y d r o s t a t i c s t ress of value ° > r T h e h y d r o s t a t i c s t r e s s , 

due to the free boundary condi t ion, vanishes on the outer edge. In the 

i n t e r i o r the sign i s t e n s i l e due to the concav i t y of the c u r v a t u r e , 

and from the symmetry condit ion around the axis , a maximum value must 

be reached on i t . Equation (6.11) i m p l i e s then t h a t ^zz > Y 

throughout the sect ion; hence the average value must also be greater, 

azz > Y. This explains the di f ference reported by Wilkins et al.(1980) 

in t h e i r c a l c u l a t i o n s w i t h HEMP, where f o r an ax ia l s t r a i n of 0.52, 

Ozz = 460 MPa w h i l e Y = 430 MPa . 

From the general equi l ibr ium equations 

a i j , j = 0 (6 .12) 

Bridgman(1952) and Davidenkov(1946) derived the d i s t r i b u t i o n of axial 

s t resses , depending on the r ad i a l coord ina te r and on the radius of 

curvature of the longi tudinal pr inc ipal stress l i n e , p : 

fD/2 

tfzz = Y(l +1 dr.) (6 .13) 
J v P 

Bridgman(1952) proposes the fo l low ing formula for the radius of 

curvature p depending on the radial coordinate : 



p = (D2/4 + OR - r 2 ) / 2 r (6 .14) 

where R is the geometr ica l radius of cu rva tu re at the root of the 

neck. Subst i tut ing in eqn. (6.13) and in tegra t ing to f ind the average 

stress: 

°zz = Y ^ + Ln[(D2/4+DR-r2)/DRj) 

(6.15) 

azz = Y(l + 4R/D)Ln(l + D/4R) 

This l a s t equat ion gives the value of the ma te r i a l s t r eng th Y 

from the measured average a x i a l s t ress ^zz* ^ d e P e n d s o n t n e 

p o s s i b i l i t y of measuring R, the radius of c u r v a t u r e . This can be a 

l i t t l e b i t cumbersome in a test where mul t ip le measurements are to be 

taken. Bridgman(1952) produced an empir ical cor re la t ion from mul t ip le 

observat ions f o r d i f f e r e n t so r t s of s tee l and o ther metals t h a t 

expresses D/R as a funct ion of the reduction of area A/A0 / o r w n a t ^s 

the same, the axial natural s t ra in ezz ' : 

D/2R = / L n A o / A . QA =^ezz - 0.1 (6.16) 

This resul t allows the correct ion factor ^ z z ^ t 0 t )e e x P r e s s e d 

d i rec t l y as a funct ion of the axial s t ra ins : 

az z /Y = [1 + 2^e z z -0 .1 ]Ln[ l + ^ e z z - 0 . 1 /2J (6.17) 

This formula may be app l i ed only f o r ezz > 0«1 • For ezz < u , i 

the deformation is assumed uni form, and no correct ion is needed. 

6.3 TENSION TESTS 

6.3.1 SPECIMENS AND MATERIAL 

The material used in the tests was HE30 (BS1474) Aluminium a l loy , 

w i t h the f o l l o w i n g compos i t ion : 0.1% Cu, 0.4-1.5% Mg, 0.6-1.3% S i , 

0.6% Fe, 0.4-1.0% Mn, 0.1%Zn, 0.5%Cr, 0.2% o t h e r s , and the res t 

Aluminium. This material comes in extruded cy l i nd r i ca l form. 



141 

Mechanical propert ies in the as-received condit ion were obtained 

from the manufacturers: 

0.1% proof stress 239 - 270 MPa 

density 2700 Kg/m3 

Young's modulus, E 67000 MPa 

Poisson's r a t i o , v 0.3 

Ultimate tens i le strength 278-293 MPa 

Elongation on 2 in 7 - 10% 

This ma te r i a l was cut and machined to form specimens of the 

geometry descr ibed in f i g u r e 6.2 . A s l i g h t taper was given in order 

to control the necking pos i t i on , the smallest diameter being located 

at the mid-sect ion. 

The composition and treatment of HE30 Aluminium is ident ica l to 

the HT30 Aluminium tube material employed in the tube crumpling tes ts . 

The only d i f f e r e n c e l i e s in the fo rm ing processes (ex t rus ion or 

drawing) . As a r e s u l t , mechanical p r o p e r t i e s f o r both m a t e r i a l s are 

very s i m i l a r . The small d i f f e r e n c e was assumed to vanish in the 

annealing process to which both specimen types were subjected (sect. 

7 .3 .2 .1) . 

6 . 3 . 2 PROGRAMME 

The specimens were annealed at 350oc pr io r to tes t i ng . Six tests 

in a l l were performed wi th the fo l lowing annealing t imes: 

Test Annealing time, hours 

CTl 
CT2 

CT3 

CT4 

CT5 

CT6 

5 
7 

none 

3 

5 

5 



142 

After annealing, all specimens were oven cooled. 

6.3.3 PROCEDURE 

The tests were carr ied out using an INSTRON Model 1195 machine, 

w i t h a lOOkN load c e l l . The specimens were secured w i t h t r a n s v e r s a l 

12.9 mm diameter s tee l pins to a f i x e d crosshead at one end and a 

moving crosshead at the opposite end. The load was applied w i th stroke 

con t ro l , at crosshead ve loc i t ies of between 0.5 and 1.0 mm/min , up to 

specimen f r a c t u r e . Frequent measurements of the neck d iameter were 

taken wi th a Vernier ca l iper (precision ±;o,o5 mm). 

6.3.4 RESULTS 

The r e s u l t s of the t e s t s are summarized in f i g u r e s 6.3 and 6.4. 

Figure 6.3 shows the axial load against the axial s t ra in ezz a t t h e 

minimum neck s e c t i o n . In a l l the t e s t s a peak value of the load is 

reached when the necking i n s t a b i l i t y ar ises. Al l specimens show f a i r l y 

close results except CT3, which was not annealed. CT3 shows an ea r l i e r 

onset of neck ing , at around e z z=0.07, a n d m u c h n i 9 h e r l e v e l s o f 

loads, wi th peak value 57kN. This corresponds to a strength of 285MPa 

referred to the or ig ina l cross-sect ional area, in accordance wi th the 

manufacturer's speci f icat ions (sect. 6.3.1). The non-annealed CT3 tes t 

showed a lso cons iderab ly l e s s d u c t i l i t y (max. n a t u r a l s t r a i n 

ezz=0.70). 

Results for the remaining tests all lie within a narrow band; 

peak loads range between 21 and 25kN, onset of necking between 

ezz=0.15 - 0.20 , and maximum strains before fracture between 

e z z = 1.15 - 1.25 . Differences in annealing time clearly did not 

influence the behaviour beyond experimental uncertainty. For instance, 

specimens CT5 and CT6 were annealed for longer time (5 hrs) than CT4 

(3 hrs), yet they yield results which are slightly closer to the non 

annealed CT3. These differences must be attributed to experimental 

scatter. The annealing process may be assumed complete for all 

specimens except CT3. 
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In f i g u r e 6.4 the average ax ia l s t ress at the neck is p l o t t e d 

against the ax ia l s t r a i n f o r the annealed specimens. Although the 

t o t a l load drops a f t e r the onset of necking due to the geomet r ica l 

reduct ion in area, i t may be seen t h a t at the e lementary l eve l the 

material does not cease to harden. 

Frac ture occurred w i t h d u c t i l e cup-and-cone geometries for a l l 

the annealed specimens. A r e p r e s e n t a t i v e p i c t u r e of one of the 

f r a c t u r e d specimens i s given in f i g u r e 6.5 . For the non-annealed 

specimen CT3 f r a c t u r e was more b r i t t l e and occurred e a r l i e r w i t h a 

bang, producing a much less well developed neck ( f i g . 6.6). 

Judging from these resul ts i t was concluded that completion of 

the anneal ing process was reached f o r CTl , CT2, CT4, CT5 and CT6 

specimens. The mechanical propert ies derived from each of the tests 

may be averaged in order to ob ta in r e p r e s e n t a t i v e p r o p e r t i e s f o r 

annealed HE30 aluminium a l loy . 

6.3.5 MICROHARDNESS MEASUREMENTS 

The necked bars were employed to study the d i s t r i b u t i o n of 

p l a s t i c s t r a i n s across t r ansve rsa l sec t i ons . This was done through 

microhardness measurements performed in a section normal to the axis 

of one of the tens i le specimens a f te r f rac ture . This section was the 

nearest to the f r a c t u r e zone which d id not show v i s i b l e voids or 

change t o i t s s t r u c t u r e f r om the f r a c t u r e . A f t e r p o l i s h i n g , 

microhardness indentations were performed at several locat ions along 

two normal r a d i i . Fur ther d e t a i l s of the microhardness t e s t i n g 

procedure and equipment are given in sec t ion 7.3.1.3.1. The r e s u l t s 

are shown in t a b l e 6 . 1 ; they show no s i g n i f i c a n t v a r i a t i o n of the 

hardness accross the sect ion. 
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Point 

1 

2 

3 

4 

5 

6 

7 

Indentation Diagonal 

(Microns) 

53 

53 

54 

52 

52 

53 

53 

Microhardness 

Hm(Kg/mm2) 

64 

64 

63 

66 

66 

64 

65 

I •' 5 6 7 *r 

Current diameter 

D = 9.2mm 

Original diameter 

Do = 15.9mm 
Microhardness load 

P = 99g 

ezz=-2Ln(D/Do) = 1 - n 

Tab! e 6 .1 : Microhardness measurementes in neck sec t i on of t e n s i l e 

specimen CT4. 

From simple cons ide ra t i ons of p l a s t i c i t y theory ( H i l l (1950), 

p.254), the hardness value H can be related l i nea r l y to the material 

s t rength Y, i t s e l f funct ion of the p las t ic s t ra in e 

H = CY( ep ) 

C being a constant whose value l i e s between 2.5 and 3.0 . Hence these 

microhardness results support the assumption of constancy of Y and e 

across the minimum neck section (sect. 6.2.1). 

6.4 MATERIAL HARDENING LAW 

For aluminium power laws of the type 

a= A e' (6.18) 

where: a uniaxial true stress 

e uniaxial natural s t ra in 

A,n material constants 
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f i t the ma te r i a l behaviour very w e l l . The parameters A,n have a 

physical i n te rp re ta t i on : A equals the stress for un i t s t r a i n , and i t 

can be shown tha t n corresponds to the s t r a i n at the peak load in a 

tens i le t e s t . 

Given the equivalence between the uniaxia l stress and equivalent 

s t ress po in ted out i n eqn. (6.5), a convenient and general form of 

expressing the material behaviour is 

Y = A( e z z ) n = A( €p+Y/E)n ? Ae£ (6.19) 

Y/E represents the e las t i c part of the s t ra ins ; these are usual ly very 

small compared to the p las t ic par t , ep> 

The average ax ia l s t ress data presented in f i g u r e 6.4 were 

co r rec ted w i t h formula (6.17) to ob ta in the values f o r the m a t e r i a l 

s t r e n g t h , Y. A power law Y = A( e z z ) n was then f i t t e d to the data 

from each tes t , by performing a l inear regression in the logar i thmic 

values (table 6.2). The parameters A,n so obtained for each test were 

averaged y i e l d i n g mean va lues of A = 181.7 MPa, n=0.182; these 

parameters prov ide a reasonable f i r s t es t ima te f o r the m a t e r i a l 

hardening law. 

Test 

CTl 

CT2 

CT4 

CT5 

CT6 

Average 

A (MPa) 

169.1 

172.5 

184.7 

191.5 

190.6 

181.7 

n 

0.190 

0.177 

0.196 

0.170 

0.178 

0.182 

Table 6.2: Results of power law f i t s to tension test resul ts 
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The r e s u l t s of t h i s average f i t , toge ther w i t h the equ i va len t 

stress - s t ra in data derived from experiment, are p lo t ted in f igure 

6.7 . Comparing w i t h the average ax ia l s t resses in f i g u r e 6.4 the 

i n f l uence of the c o r r e c t i o n fo rmula (6.17) i s pa ten t , l o w e r i n g 

cons iderab ly the s t ress values f o r the l a r g e r s t r a i n s . For a u n i t 

s t r a i n , the average axial stress is approximately 215 MPa, whi le the 

equivalent stress is lowered to 182 MPa , a reduction of 18%. 

Although the "average" power law obta ined represents a good 

ove ra l l f i t , i t can be seen in f i g u r e 6.7 t h a t some d isc repanc ies 

s t i l l e x i s t i n the region of low s t r a i n s ( ezz < 0> 2)> w h i l e t n e f i t 
i s very good f o r the h igher s t r a i n s . I t can a lso be seen t h a t the 

discontinuous appl icat ion of the correct ion formula (6.17) from ezz > 

0.1 has produced a d i s c o n t i n u i t y in the slope of the s t ress - s t r a i n 

data. 

I t i s reasonable to suspect t h a t the c r i t i c a l reg ion f o r 

a p p l i c a t i o n of the c o r r e c t i o n fo rmula (6.17) i s i n the low s t r a i n 

region, before the necking or when the neck curvature is smal l . I t is 

here that the empir ical re lat ionship (6.16) between the neck curvature 

and the ax ia l s t r a i n may be more in e r r o r . This r e l a t i o n s h i p has a 

bias towards s t e e l , which u s u a l l y necks e a r l i e r than a lumin ium. 

Greater conf idence can be placed in eqn. (6.16) f o r the h igher 

s t ra ins , where the necking is well developed. 

Consequen t l y two a d d i t i o n a l c u r v e f i t s to the co r rec ted 

exper imenta l data have been t r i e d . These ma in ta in roughly the same 

s t ress values f o r the h igher s t r a i n s , but d i f f e r s l i g h t l y from the 

average curve f i t for the lower s t a i n region. A simple way for th i s 

v a r i a t i o n i s , ma in ta in ing the power law approach, to keep the same 

value for parameter A (which represents the stress for un i t s t r a i n ) , 

and vary the exponent n. Two addit ional values of n were t r i e d : 

n l = 0.159 which gives a curve i n the middle of the s t ress 

band, for ezz < Q.2 
n2 = 0.133 which gives a curve near the top of the s t ress 

band, fo r ezz < ^«2 

appears that n 1 Shou1d give the best fit, but this will be 



150 

I M I 

II 

-
e*l 

# 1 < 

1 D> 

s 0 < 
\ 0 
1 ^ — c\i <r un -o 

#, a i— h- h- i— i— 
H ] <g U U U U U I 
S § ^ <a > O • * 

• • P <| 

*\P > < 

•V- > < 

\ib ><3 

1 ° « 

\ t o t > 

' i * G £> 

i i i i i i i ^ ^ 

i 

S £ 
d c> 

CO Ci) 

» 
0 0 CO 

II 

o 

1 
1 
1 

1 

II 

0 

1 1 

°o 

» 
00 

II 

o 

1 

1 

1 

_ 

-

-

-

1 

o 
o 
o 
-3" 

o 
o 
o 
CM 
CM 

o 
o 
o o 
CM 

O 
O 

O 
QO 

O 
O 

O 
SO 

O 
O 

o 

o 
o 

o 
CM 

o 
o 
o 
o 

o 
o 

o 
00 

o 
o 

o 
SO 

o 
o 

o 
-4" 

o 
o o 
CM 

o 
CM 

o 
o 

o 
00 

o 
SO 
o 

o 

o 

o 
CM 
o 

o 
o 

o 
o 
o 

e^^j) s s e j u g aue] BA ! nbg 



151 

decided from the r e s u l t s of numerical c a l c u l a t i o n s us ing the th ree 

suggested curve f i t s , and t h e i r comparison w i t h exper imenta l 

observation. 

6.5 NUMERICAL CALCULATIONS FOR TENSION TESTS 

The tension tests were simulated numerical ly. From the resul ts of 

the calculat ions i t was possible to decide on the power law parameters 

that provide the best f i t fo r the experimental resu l ts . Add i t i ona l l y , 

the calculat ions provided a check for the v a l i d i t y of the assumptions 

t h a t were made i n the i n t e r p r e t a t i o n of the t e n s i l e t e s t f o r the 

stress and s t ra in d i s t r i bu t i ons . F ina l ly th i s exercise was useful as a 

va l idat ion of the Exp l i c i t F in i t e Difference model proposed in th i s 

t h e s i s ( c h a p t e r 4 ) , when a p p l i e d t o l a r g e s c a l e n o n - l i n e a r 

computations for pract ica l engineering problems. 

6.5.1 MODEL 

The calculat ions were performed using axisymmetric analysis, wi th 

a 2-D d i s c r e t i z a t i o n in the r-z plane ( f i g . 6.8). The symmetry 

condit ion around the plane of the minimum cross-sect ion (z=0) allowed 

a f u r t h e r reduc t ion to a quar te r of the r - z s e c t i o n . The mesh 

consisted of 875 t r iangu lar c e l l s , grouped in to 438 MTQ elements (see 

sect. 4.2.2) and 390 nodes. The model did not comprise the end f i x ings 

as they l i e f a r from the area of i n t e r e s t and i t was considered t ha t 

they behave in pract ice as r i g i d load- t ransmi t t ing devices. Only the 

cen t ra l tapered po r t i on of h a l f - l e n g t h 37.5 mm was model led. Shear-

f ree boundary cond i t i ons were assumed at the top and bottom ends of 

the specimen modelled. The mesh becomes progressively f i ne r near the 

neck reg ion , which i s the area of i n t e r e s t , and where the s t ress and 

s t r a i n g rad ien ts w i l l be s teepest . A d d i t i o n a l l y , a high r:z aspect 

r a t i o was given to the elements in t h i s area in order to avoid 

excessively d is tor ted shapes when the neck is elongated in the axial 

d i rec t i on . 
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Figure 6.8. MESH USED FOR TENSION TEST CALCULATIONS 
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Figure 6.9, HISTORIES OF VELOCITY APPLIED AT END OF NUMERICAL MODEL 
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6.5.2 ANALYSIS 

The tests were performed under quas i -s ta t ic condit ions at speeds 

of between 0.5 - 1.0 mm/min. The numerical algori thm used solves the 

equations of cont inuum mechanics in t ime w i t h an e x p l i c i t t i m e -

marching scheme; t h i s leaves no op t ion f o r s t a t i c a n a l y s i s , as 

c a l c u l a t i o n s r e p r e s e n t a lways a f u l l dynamic mode l . As t h e 

computational t ime-step is l i m i t e d for numerical s t a b i l i t y to a small 

value (sect . 4.7), i t would be too expensive in computer t ime to 

perform the dynamic analysis in real t ime. 

To be able to perform the c a l c u l a t i o n s v e l o c i t y s c a l i n g was 

in t roduced (see sec t ions 4 . 1 , 5.4). The v e l o c i t y of de fo rmat ion was 

increased in order to bring down the number of computational cycles 

necessary f o r the a n a l y s i s , from the 2x1010 t h a t would be needed i f 

the real ve loc i ty of deformation were to be used, to around 4x104. 

Velocity scal ing usually works well fo r quas i -s ta t ic problems, as 

long as the deformat ion is app l ied s l ow l y enough so as to l e t the 

stress-waves t r a v e l back and f o r t h along the model several t i m e s , 

al lowing red is t r i bu t i on of stresses. In other words, the model must 

not depart too much from the s t a t i c e q u i l i b r i u m which must be 

simulated at each step in t ime. Two ways of quant i fy ing th i s departure 

from equi l ib r ium are: 

- Ensuring t h a t the load h i s t o r i e s at opposi te ends of the specimen 

are approximately equal (the out of balance forces must be small when 

compared to the to ta l forces); 

- Checking t ha t the k i n e t i c energy is smal l compared to the o v e r a l l 

energy involved in the deformation process. 

Three calculat ions are reported here, for each of the power law 

curve f i t s f o r the ma te r i a l c o n s t i t u t i v e behaviour suggested in 

sec t ion 6.4 (eqn. 6.18): 



Y = A e n 

Analysis 

TENS3 

TENS5 

TENS7 

A (MPa) 

181.7 

181.7 

181.7 

n 

0.182 

0.159 

0.133 

In t h e c a l c u l a t i o n s t h e t y p i c a l a x i a l v e l o c i t y was 10 m/s and 

t o t a l t imes of ana l ys i s were between 1.25 msec and 1.6 msec. 

The neck sec t ion was kept f i x e d in i t s plane w h i l e a p rescr ibed 

v e l o c i t y was a p p l i e d t o t h e upper end ( f i g . 6 .8) . The h i s t o r i e s o f 

app l ied v e l o c i t i e s are given in f i g u r e 6.9 . Ramps were in t roduced t o 

a v o i d sudden changes c a u s i n g a l t e r a t i o n s t o t h e e q u i l i b r i u m . 

Cons ider ing the s t ress-wave propagat ion v e l o c i t y in Aluminium of 6000 

m/s and an i n i t i a l length of 37.5 mm , the l a rges t s t ress-wave per iod 

i s ( i n i t i a l l y ) 0.0125 msec . Thus the number of s t ress-wave per iods in 

t h e c a l c u l a t i o n s , or i n o t h e r w o r d s , t h e number of t i m e s t h e s t r e s s 

waves t r a v e l l e d back and f o r t h r e d i s t r i b u t i n g s t r esses , i s between 100 

and 128. We s h a l l see l a t e r ( s e c t . 6.5.3) t h a t t h e d e p a r t u r e f r o m 

e q u i l i b r i u m i n the fo rce h i s t o r i e s t h i s amount of v e l o c i t y sca l i ng 

ocassioned was s m a l l . 

The importance of t h i s c o s t - c u t t i n g compromise w i l l be c l e a r by 

ment ion ing t h a t CPU t ime f o r each of the c a l c u l a t i o n s in a CRAY-IS was 

between 30 and 45 m i n u t e s . Th i s r e p r e s e n t s c o n s i d e r a b l e compu te r 

r e s o u r c e s . In a model w i t h o u t v e l o c i t y s c a l i n g t h e c o s t s wou ld be 

5x105 t imes h igher (tens of years CPU t i m e ) , way beyond the f e a s i b l e 

range w i t h the cu r ren t development in d i g i t a l computers. 

6 .5 .3 RESULTS 

The average s t res versus s t r a i n r e s u l t s ( f i g . 6.10) l i e p r e c i s e l y 

where i t was presumed f r o m t h e c h o i c e o f c u r v e f i t s done i n s e c t i o n 

6.4 . In a l l t h r e e cases f o r t h e l a r g e s t r a i n r e g i o n ( e z z > Q . 2 ) t he 

f i t i s very good, in the midd le of the exper imenta l band. For the low 

s t r a i n r e g i o n ( e z z < Q . 2 ) t h e r e s u l t s f r om TENS3 are i n the l o w e r 

p a r t of t h e band, TENS5 i n t h e m i d d l e , and TENS7 i n t h e upper p a r t . 
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Th is suggests t h a t t h e cu rve f i t used f o r TENS5 i s t h e most 

appropriate, as had been ant ic ipated. Hence, the hardening law for the 

HE30 aluminium material w i l l be taken as: 

Y = 181.7 e 0 * 1 5 9 (MPa) (6.20) 

A view of the deformed mesh for TENS5 with all symmetries plotted 
is given in figure 6.12. At this point the axial strain at the neck 

was ezz = *••" * 

The curves presented in f igures 6.10 and 6.11 were taken from the 

calculated t ime-h i s to r i es , a f te r averaging the load between top and 

bottom of the model, and having app l i ed a numer ical f i l t e r w i t h a 

centred moving average technique, to f a c i l i t a t e the v i sua l i za t ion and 

in te rp re ta t i on . The exact t ime-h is to r ies obtained in the ca lcu lat ions 

f o r top and bottom loads are given i n f i g u r e 6.13 . I t can be seen 

that a state of s ta t i c equ i l ib r ium existed for most of the analys is, 

the two load h i s t o r i e s being approx imate ly equa l . At about 1.1 msec 

however, some o s c i l l a t i o n s occur in the h i s t o r i e s c r e a t i n g c e r t a i n 

d e p a r t u r e f r o m s t a t i c e q u i l i b r i u m . These o s c i l l a t i o n s have 

approximately the period of the longi tudinal stress waves t r a v e l l i n g 

along the specimen: 

T = 2 L. = 2 45xl0-3m = 0.015 msec 
c 6000 m/s 

L being the cu r ren t leng th of the specimen and c the v e l o c i t y of 

s t ress waves. I t can be apprec ia ted t h a t only a smal l number of 

s t ress-wave per iods occur in an i n t e r v a l of t ime at which la rge 

var iat ions in the neck size (see f igure 6.14) and material behaviour 

take p lace. The model does not have t ime to d iges t these changes 

quickly enough and the information is t ransmi t ted in jumps o r ig ina t ing 

the consequent e l a s t i c o s c i l l a t i o n s . I t i s i n t e r e s t i n g to note the 

l a rge r ampl i tude of the o s c i l l a t i o n s at the top end, which i s 

unloading e l a s t i c a l l y , than at the neck, where the p l a s t i c i t y of the 

material behaviour dampens out the osc i l l a t i ons . At no moment however 

do the osc i l l a t i ons in load depart from the equ i l ib r ium value by more 

than 10%, and the expected trend of the load curve is maintained. 
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For f i g u r e s 6.10 and 6.11 the load h i s t o r i e s were averaged and 

f i l t e r e d , removing osc i l l a t i ons of frequencies higher than 50000 Hz, 

which corresponds roughly to the stress-wave period. In t h i s way the 

ove ra l l t r end of the r e s u l t s can be seen more c l e a r l y , w i t h o u t 

unwanted numerical osc i l l a t i ons , due mainly to the compromise made in 

the veloc i ty scal ing. 

Some contour p l o t s of d i f f e r e n t s t ress components f o r the neck 

region are presented in f i gu re 6.15; the fo l l ow ing observations may be 

made about these: 

a) The r a d i a l ( f i g . 6.15b) and hoop ( f i g . 6.15c )• s t r e s s e s are 

approximately equal in the neck region, tending to zero at the outside 

edge, and reaching maximum values near the axis of about 60 MPa; 

b) The a x i a l s t ress ( f i g . 6.15d) i s c l e a r l y non-un i fo rm across the 

neck s e c t i o n , decreasing from approx. 270 Mpa in the ax is to 200 MPa 

on the outside; 

c) The y i e l d s t reng th Y (eqn. 6.2) i s roughly un i fo rm across the neck 

section ( f i g . 6.15a), wi th an approximate value of 189 MPa; 

d) The axial s t ra in at the minimum section is e z z = i#22 which from 

eqn. (6.20) corresponds to a f low stress of 

Y = 181.7xl.220 '159 = 188 MPa 

and an average axial stress (from eqn. (6.17)) of 

<7ZZ = Y(l+2//T7l2)Ln(l+lfr7l2'/2) = 1.23Y = 231 Mpa 

These values correspond very c l o s e l y to those expressed above in c) 

and b) respect ively. 

The y i e l d strength contours for the complete specimen are p lo t ted 

in f i g u r e 6.16, showing the much lower l e v e l s of s t r a i n - h a r d e n i n g 

which occurred in the upper par t of the model. This hardening 

happenned in the f i r s t stage of uniform deformation of the specimen; 

af ter the necking that region has been unloading e l a s t i c a l l y . 

http://181.7xl.220'159
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A l l t h e s e r e s u l t s match very c l o s e l y t h e t h e o r e t i c a l 

i n t e r p r e t a t i o n of the t e n s i l e t e s t d e t a i l e d in 6.2, suggest ing the 

general v a l i d i t y of that in te rp re ta t ion and of the numerical model. 

6.6 CONCLUSIONS 

1. Tension t e s t s on c y l i n d r i c a l bars c o n s t i t u t e a s imple and 

r e l i a b l e means of o b t a i n i n g m a t e r i a l s t r e s s / s t r a i n data at l a rge 

s t ra ins , when viewed as a 3-D p l a s t i c i t y problem. 

2. The i n t e r p l a y between the theory (sect . 6.2) and numer ica l 

ana lys i s (sec t . 6.5), coupled w i t h exper imenta l f a c t (sec t . 6.3), 

a l lowed a s imple and rep resen ta t i ve c o n s t i t u t i v e law f o r the HE30 

Aluminium to be es tab l i shed (eqns. 6.18, 6.20), f o r use in f u t u r e 

la rge s t r a i n p l a s t i c i t y analyses (chapter 7). This c o n s t i t u t i v e law 

assumes Von Mises p l a s t i c i t y wi th power law isot rop ic hardening. 

3. Excellent agreement was achieved between numerical pred ic t ions, 

experimental f a c t , and theoret ica l understanding, of the behaviour of 

a p l a s t i c a l l y deforming necked cy l i nd r i ca l bar (sections 6.3.5, 6.5.3, 

f i g s . 6.10, 6 .11, 6.15). The semi -empi r i c a l t h e o r i e s of Bridgman 

(1952) and Davidenkov and Spir idinova (1946) were broadly confirmed by 

the numerical resu l t s . 
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7.1 INTRODUCTION 

The numerical methods described in chapter 4 are applied here to 

the ana lys is of tube co l l apse mechanisms, w i t h a view to s tudy ing 

the i r performance as energy d iss ipat ing devices. 

In accordance wi th the charac ter is t i cs of the computer program, 

the a t t e n t i o n was r e s t r i c t e d to mechanisms which could be s tud ied 

through axisymmetric or 2-dimensional models. In pa r t i cu la r , most of 

the work r e l a t e s to a x i a l co l l apse of tubes through ax isymmet r ic 

sequential fo ld ing . This mode of col lapse plays an important role in 

energy d iss ipat ion and i t s numerical modelling poses some in te res t ing 

challenges. For example: 

a) Large strains (with values higher than 1.3) and gross deformations 

(complete c rumpl ing of tube w a l l s ) need a c a r e f u l and c o n s i s t e n t 

mathematical treatment (chapter 2); 

b) The need to provide c o n s t i t u t i v e laws v a l i d f o r la rge s t r a i n s 

(chapter 6 ) ; 

c) Contacts w i t h the p la tens and between f o l d s make necessary a 

general logic for in terac t ion between cont inua; 

d) Dynamic analysis is necessary, as energy d iss ipat ion occurs mainly 

in impact s i tua t ions , where stress-wave propagation or i ne r t i a ef fects 

are often important; 

e) L a s t l y , a r o b u s t n u m e r i c a l a l g o r i t h m is necessary which 

accomodates the s o l u t i o n to the above problems and works we l l in 

pract ice for rea l , engineering scale problems (chapter 4). 

7.1.1 SCOPE 

This chapter relates to the fo l low ing : 

1 - F i r s t l y a general overview of energy d iss ipa t ion , and the role of 

tubes in i t , i s presented. This i s f o l l o w e d by a d e s c r i p t i o n of some 
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experimental work on tube col lapse; most of t h i s work was car r ied out 

by Ghani (1982), and i t w i l l be used to compare w i t h the numer ica l 

predict ions for axisymmetric tube crumpling that fo l l ow. 

2- Results f rom numerical c a l c u l a t i o n s of q u a s i - s t a t i c ax ia l 

co l l apse are given f o r 4 d i f f e r e n t tube geometr ies ( t ab le 7.3). Over 

20 computer analyses (table 7.4) were performed in order to assess the 

a p p l i c a b i l i t y of the method, and eva luate the i n f l u e n c e of var ious 

mode l l ing cho ices . Optimal models were then se lec ted f o r the f i n a l 

analyses. The resul ts are compared wi th experimental data. 

3- In the medium veloc i ty range, a f u l l - s c a l e model of the impact of 

a th in -wa l led vessel at 176 m/s was performed. This problem tested the 

performance of the computer code f o r l a rge scale eng ineer ing 

computations, involv ing several thousand degrees of freedom and over a 

hundred thousand t ime-steps. The resul ts compared well w i th avai lable 

exper imenta l data. The c rush ing fo rce obta ined was found t o be 

considerably larger than for low-ve loc i ty col lapse. 

7.2 OVERVIEW OF ENERGY DISSIPATING DEVICES 

Energy d iss ipat ing devices are reviewed b r i e f l y in th i s sect ion. 

The in tent ion is to introduce pract ica l project ions for the numerical 

a p p l i c a t i o n s presented l a t e r . The importance of the var ious tube 

collapse mechanisms is h ighl ighted. 

7 .2 .1 DEFINITION AND CRITERIA 

Energy d iss ipat ing devices are mechanisms which can dissipate the 

k inet ic energy from the impact of c o l l i d i n g bodies in an i r r eve rs ib l e 

manner. 

E l a s t i c , recoverable systems are t h e r e f o r e excluded from t h i s 

d e f i n i t i o n . Usually, energy is dissipated through p las t i c work, being 

converted i n t o heat e v e n t u a l l y . To f u l f i l l t h e i r f u n c t i o n w i thou t 

excessive deceleration and consequent damage, energy absorbers must 

provide a reasonably constant operating force over as long a stroke as 
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possible. This must occur in a cont ro l led ( i .e. without catastrophic 

f a i l u re ) and re l iab le way. 

I d e a l l y energy absorbers should be made of low cost and w ide l y 

avai lable components, w i th high values for the fo l low ing parameters: 

- Specific energy, i . e . Energy dissipated / Mass of device 

- Stroke e f f i c i ency , i . e . Absorbing length / Total length 

- Energy d i s s i p a t i n g d e n s i t y , i . e . Energy d i s s i p a t e d / Volume of 

device. 

7.2.2 TYPES OF ENERGY DISSIPATING DEVICES 

Some of the main types of energy absorbers are summarized below, 

concen t ra t i ng on d e s t r u c t i v e (one shot) devices, mainly of meta l l i c 

mater ia ls. No attempt is made to provide a comprehensive review of the 

t o p i c . Exce l len t reviews have been given by Johnson and Reid (1978) 

and Ghani (1982). 

Schematically one may c lass i f y the various mechanisms according 

to t he i r mode of behaviour, as fo l lows. 

a) Ex tens ion . Steel rods or cables under tens ion have been used 

ex tens i ve l y in p ipe-wh ip r e s t r a i n t systems (e.g. Hernalsteen and 

L e b l o i s , 1976). A disadvantage i s t h a t t e n s i l e de format ions tend to 

become local ized in necks and may produce overal l f a i l u r e . 

b) Compression. For ins tance the c rush ing of l i g h t w e i g h t c e l l u l a r 

bodies or of soft copper bumpers (Hernalsteen and Leblois, 1976). 

c) Bending. Beams and plates may dissipate energy through rotat ion in 

p las t ic hi.nges. Latera l ly crushed tubes or assemblies thereof provide 

some very use fu l devices (Thomas, Reid and Johnson (1976), Sh r i ve , 

Andrews and England (1984)). 

d) Compression and bending. Systems in which bending modes are 



produced as a resul t of a s t ructura l compression may be included here. 

These comprise some of the most e f f i c i e n t energy absorbers, such as 

the axial crumpling of c i r cu la r tubes (axisymmetric or diamond modes) 

and tube i n v e r s i o n . Tubes w i t h n o n - c i r c u l a r sec t ions have been used 

advantageously by Kukkola (1976). Honeycomb panels provide also a very 

popular and re l i ab le mechanism (McFarland, 1963). 

e) Cyc l i c bending, Here one may inc lude systems such as the r o l l i n g 

to rus of Johnson, Reid and Singh (1975). These tend to be assoc ia ted 

with l i gh te r operating loads. 

7 . 2 . 3 TUBES AS ENERGY ABSORBERS 

Tubes have a par t i cu la r in teres t as energy absorbers, because of 

a l l the e x i s t i n g devices they present the w ides t range of poss ib le 

uses; These inc lude some of the most e f f i c i e n t and r e l i a b l e energy 

d iss ipat ion mechanisms. 

Tubes are s imple s t r u c t u r e s and t h e r e f o r e cheap and w ide ly 

avai lable. Add i t iona l ly , the basic st ructure of many moving vehicles 
and a i r c r a f t is a tube, which w i l l double up in funct ion as an energy 

absorber in the event of a c o l l i s i o n . 

The main tube collapse mechanisms are reviewed below. Some simple 

c lass ica l analyt ical formulae for co l l apse loads are inc luded where 

per t inent . 

7.2.3.1 LATERAL COMPRESSION 

Tubes crushed l a t e r a l l y provide a very re l i ab le energy absorber 

in which the p l a s t i c de fo rmat ion i s concent ra ted around l o c a l i z e d 

h i n g e s . DeRuntz and Hodge (1963) s t u d i e d e x p e r i m e n t a l l y and 

t h e o r e t i c a l l y t h e i r behaviour , d e r i v i n g a formula f o r the co l l apse 

load based on a r i g i d - p l a s t i c , t h i n shel l model: 
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D^l-(5/D)* 

where 6 i s the d isp lacement , t 0 a n d D the th ickness and Diameter of 

the tube respect ively, and Y the Yield stress for a per fect ly p las t i c 

material model. Due to the absence of material hardening in (7.1) some 

d iscrepanc ies w i t h exper iments were no tab le ; Reid and Reddy (1978) 

have proposed more recently solut ions in which l inear s t ra in hardening 

is considered, achieving better resu l ts . 

7.2.3.2 AXISYMMETRIC AXIAL CRUMPLING 

When sub jec ted to ax ia l compress ion, tubes may buckle in an 

ax isymmetr ic f a s h i o n , fo rming c o n c e r t i n a - t y p e f o l d s which p i l e up 

sequential ly on top of each other (Figure 7.1a). 

This col lapse mode const i tutes a very e f f i c i e n t energy absorber, 

by reason of the gross p l a s t i c de format ions which occur in a la rge 

proportion of the tube. The sequential nature of the fo ld ing process 

accounts for a reasonably constant operating force over a long stroke. 

For given tube dimensions t h i s mechanism is r ep roduc ib l e and very 

r e l i a b l e (Ghani, 1982). 

Alexander (1960) f i r s t derived an approximate solut ion for th i s 

mechanism from r i g i d - p l a s t i c t h i n s h e l l assumpt ions. The average 

collapse load and fo ld length according to t h i s theory are 

P = 6t0YyDt0 (7.2) 

h = / *" ^ 0 (7.3) 

Alexander's formulae, however simple, give sensible predict ions 

in genera l ; they are o f ten r e f e r r e d to (e.g. Johnson, 1972) and 

continue to be used today by many workers (e.g. Hurley, 1983, Mamalis 

and Johnson, 1983). However, eqn. (7.2) assumes a per fec t ly p las t i c 

ma te r i a l (no harden ing) ; f o r good p r e d i c t i o n s care must be taken to 

use a value f o r Y r e p r e s e n t a t i v e of the ac tua l average s t r a i n -
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hardening of the mater ia l . Experimental and numerical studies car r ied 

out here show e f fec t i ve p las t i c s t ra ins accross the fo ld sections of 

the crumpled tube between 0.3 and 1.3 (sec t ion 7.3.3). This suggests 

an appropr ia te average value of 0.8 s t r a i n t o be used f o r o b t a i n i n g 

the value of Y. 

Numerical analyses of these mechanisms are undertaken in sections 

7.3 and 7.4, cons t i tu t ing the core of t h i s chapter. 

7.2.3.3 DIAMOND FOLD AXIAL CRUMPLING 

When subjected to ax ia l compression, another possible collapse 

mechanism i s the fo rma t ion of non-ax isymmetr ic f o l d s in a diamond 

pat tern, accompanied by a change in cross section of the tube ( f igure 

7.1b). This mechanism i s a lso r e l i a b l e and e f f i c i e n t as an energy 

absorber, although the speci f ic energy is s l i g h t l y lower than for the 

concertina mode (Ghani, 1982). 

Diamond f o l d c rumpl ing was s tud ied by Pugsley and Macaulay 

(1960), who proposed formulae based on r i g i d - p l a s t i c analysis. Further 

study has been made by Johnson, Soden and Al-Hassani (1977) who 

assumed 'inextensional collapse modes'. Thornton and Magee (1977) have 

also used these devices as energy absorbers; they prepared the tubes 

p rev ious l y by making 3 c i r c u m f e r e n t i a l i n d e n t a t i o n s at one end, in 

order t o avoid the i n i t i a l peak load and t r i g g e r smoothly a 3- lobe 

diamond pattern. 

7.2.3.4 TUBE INVERSION 

Tube inve rs ion modes may be achieved e i t h e r by pushing a tube 

a x i a l l y against a radiused d ie or by p re fo rm ing and c lamping 

appropriately one end. Inversion may be external or i n te rna l . Plast ic 

deformations extend to v i r t u a l l y the complete length of tube, as each 

section is f i r s t bent, and then straightened out. An e f f i c i e n t energy 

absorber wi th a nearly f l a t load response is thereby obtained. 

Guist and Marble (1966) have considered i n v e r s i o n tubes f o r 
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impact absorp t ion in land ing of a i r c r a f t and space v e h i c l e s ; they 

proposed a simple r i g i d -p l as t i c equation for the collapse load: 

P = 7Tto\/8Dtcr ( 7 - 4 ) 

Al-Hassani, Johnson and Lowe (1972) have presented a deta i led study of 

these devices, developing fu r ther the ana lys i s to i nc lude power- law 

s t r a i n - h a r d e n i n g , ach iev ing thus a b e t t e r match to exper imenta l 

resu l t s . 

7.3 QUASI-STATIC CONCERTINA TUBE COLLAPSE ANALYSIS 

7 .3 .1 RELATED EXPERIMENTAL WORK 

A d e s c r i p t i o n i s given here of the exper imenta l work on q u a s i -

s ta t i c col lapse of Aluminium tubes to which reference w i l l be made in 

the f o l l o w i n g sec t i ons , where the exper imenta l r e s u l t s w i l l be 

compared w i t h numerical p r e d i c t i o n s . Most of the exper imenta l data 

mentioned here are der ived from work done by Ghani (1982) who 

undertook an extens ive programme of study and c l a s s i f i c a t i o n of 

co l l apse modes, spanning 189 d i f f e r e n t tube geomet r ies . A good 

synopsis of these tests and t h e i r resul ts has been given by Andrews, 

England and Ghani (1983). 

In addit ion to Ghani's work, 5 extra tubes have been crumpled for 

th i s invest igat ion in order to prov ide a d d i t i o n a l exper imenta l data 

which were needed (Table 7.1). This was done w i t h the same ma te r i a l 

and under ident ical condit ions as Ghani (1982). 

F i n a l l y , in order t o prov ide data f o r the s t ress d i s t r i b u t i o n s 

around the fo ld hinges, some crumpled tubes were cut and microhardness 

t e s t s performed on the wa l l sec t i ons . The microhardness data were 

ca l ibra ted and correlated to the material strength Y. 
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Geometry 

t o(mm) 

1.27 

1.28 

1.67 

1.65 

1.67 

L(mm) 

50.8 

88.9 

50.8 

50.8 

88.9 

013 (mm) 

38.1 

38.1 

38.1 

38.1 

38.1 

Col lapse mechanism 

Concertina, 3 1/2 folds 

Concertina, 6 fo lds 

Concertina, 3 fo lds 

Concertina, 3 fo lds 

Concertina, 5 fo lds 

Table 7 . 1 : Addit ional tests for axial col lapse of tubes 

(HT30 annealed aluminium) 

7.3.1.1 EXPERIMENTAL PROGRAMME AND METHOD 

The tests were performed on HT30 (BS1471) Aluminium a l loy tubing. 

This ma te r ia l has i d e n t i c a l compos i t ion and s i m i l a r mechanical 

properties as the HE30 a l loy used for the bar tension tests reported 

in chapter 6. The as - rece ived mechanical p r o p e r t i e s of HT30 are as 

fo l low: 

0.1% proof stress 

density 

Young's modulus, E 

Poisson's ratio 

Ultimate tensile strength 

Elongation on 2 in. 

228 -243 MPa 

2700 Kg/m3 

67000 MPa 

0.3 

304 MPa 

7 - 9% 

The s l igh t var ia t ion in mechanical propert ies from those of HE30 

is due to the d i f fe ren t cold-forming processes: HT30 tubes are formed 

by drawing, while HE30 bars are extruded. 

The specimens were annealed pr io r to tes t ing at a temperature of 

350o c f o r t imes ranging between 3 and 7 hours, depending on wal l 

thickness; a l l specimens were oven cooled. 

The tubes were crumpled under s t roke c o n t r o l us ing an I ns t r on 

Model 1195 press , w i t h a 100 kN load c e l l . The few specimens which 

r e q u i r e d l a r g e r loads were t e s t e d w i t h a Losenhausen p r e s s . 

Deformation rate was approximately 5 mm/min. Undeformed tube lengths 



ranged between 6.35 and 533.4 mm. 

7.3.1.2 TYPICAL EXPERIMENTAL RESULTS 

The collapse modes obtained by Ghani (1982) may be grouped in to 

the fo l lowing broad categor ies: 

- Concertina (49 tubes); Axisymmetric, sequential fo ld ing s ta r t i ng at 

one end of tube 

- Pi amond (5 t u b e s ) ; Non-ax i sy mmet r i c but sequent ia l f o l d i n g 

accompanying a change in cross section shape 

- Mixed concer t ina-d iamond (44 tubes ) ; s t a r t i n g as conce r t i na and 

changing over to the diamond mode a f te r some folds 

- Euler (31 tubes) ; buckling of tube as a s t ru t 

- Various c rush ing modes (60 tubes ) ; s imul taneous co l l apse of the 

whole tube due to crushing, t i l t i n g , 2-lobe diamond, or simultaneous 

concertina fa i l u r e . 

Figure 7.1 shows a s e l e c t i o n of t e s t r e s u l t s , f e a t u r i n g an 

example of each of the co l l apse modes mentioned above. According t o 

the l eng th /d iame te r and wa l l t h i c k n e s s / d i a m e t e r r a t i o s of the 

undeformed tubes, a c l a s s i f i c a t i o n char t was drawn up ( f i g u r e 7.2). 

This diagram indicates d i s t i n c t regions in which a cer ta in collapse 

mode can be expected. 

Curves i n d i c a t i n g the v a r i a t i o n of a x i a l load w i t h ax ia l 

shortening of the tubes were p lo t ted d i r ec t l y fo r a l l the tes ts . From 

the ana lys is of these curves , the energy absorption character is t ics 

were obtained for the various modes of co l lapse. 

Using the co l l apse mode regions def ined in f i g u r e 7.2, tube 

geometr ies can be se lec ted f o r which one may expect conce r t i na 

sequent ia l f a i l u r e . The 5 ex t ra tubes ( tab le 7.1) t es ted f o r t h i s 

i n v e s t i g a t i o n were se lec ted w i t h such c h a r a c t e r i s t i c s ; they a l l 

co l lapsed in concer t i na mode as expected. A t y p i c a l r e s u l t together 

with the corresponding load-compression curve is shown in f igure 7.3. 



FIGURE 7.1:COLLAPSE MODES FOR ALUMINIUM TUBES UNDER AXIAL .COMPRESSION (GHAN'I, 1952) 
A - Concertina, B - 3 lobe diarrmd, C - Euler buckling, D - Mixed Concertina-
Diamnd, E - Crushing, F - 2 lobe dicrond crushing, G - sinultaneous concertina 
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Figure 7.3: Typical resul ts of quas i -s ta t ic tube crumpling experiment 
wi th HT30 annealed aluminium a l l o y (Concert ina mode of 
col lapse) 
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7.3.1.3 MICROHARDNESS TESTS 

L o n g i t u d i n a l s e c t i o n s of some tubes have been c u t and 

microhardness tests performed on them, in order to derive s t ra in and 

s t ress d i s t r i b u t i o n s which could be checked aga inst numerical 

predic t ions. 

7.3.1.3.1 Equipment and procedure 

A Reicher t microhardness t e s t e r was used f o r these t e s t s . I t 

cons i s t s in essence of a 1360 apex angle square pyrammid diamond 

indentor, which can be pressed against the specimen wi th a speci f ied 

l oad , and then moved out of the way f o r measuring w i t h a microscope 

lens the size of the impression. 

The microhardness Hm - j s defined as the mean pressure exerted on 
the surface of the indentor. Simple geometrical considerations permit 

the expression of Hm (Kg/mm2) as a funct ion of the applied load P (g) 
and the indentation diagonal, d (microns): 

Hm = 1854.4 P/d (7.5) 

Although there is geometrical s im i l i t ude between indentations of 

d i f f e r e n t s i zes , and con t ra r y to what happens f o r (macro)hardness 

(VPN) at h igher loads, the microhardness i s not independent of the 

load a p p l i e d . Hence an a r b i t r a r y constant load of 99 g was se lec ted 

for a l l the measurements. 

The surfaces of the specimens were lapped p r i o r to t e s t i n g , in 

order to ob ta in smooth, f l a t sur faces in which the microscop ic 

indentation measurements could be taken wi th su f f i c i en t precis ion. 

Three crumpled tube specimens were se lec ted f o r t e s t i n g . The 

or ig ina l dimensions of these tubes were 

- ID = 19.05mm to = 1«64rnm> L = 50.8mm (geometry A, sec t . 7.3.3.1); 

- ID = 19.05mm, t Q = i . i7mm, [_ = 50.8mm (geometry B, sec t . 7.3.3.2); 



= 1.65mm, L = 50.8mm (geometry C, sec t . 7.3.3.3). 

In each case, the microhardness measurements were done only in an 

area around one of the f o l d s . The s ize of the i n d e n t a t i o n d iagonals 

varied between 50 and 70 microns; a separation of 200 to 300 microns 

was l e f t between d i f f e ren t indentations in order to e l iminate cross-

i n f l u e n c e s . Typ ica l r e s u l t s f o r one of the above tubes are shown in 

f i g u r e 7.4. 

7.3.1.3.2 Derivation of material strength, Y 

The strain-hardened f low stress Y is re lated to the hardness. For 

a per fect ly p las t ic material t h i s re la t ionship is l inear (H i l l (1950), 

p260): 

H = CY (7.6) 

where C is a constant factor depending on the geometry of the indentor 

and the angle of f r i c t i o n , which norma l l y l i e s between 2.5 and 3.0. 

For a smooth, f l a t die Prandt l 's so lut ion (sect . 5.4.1) y ie lds 

C = (2+7T) / fT= 2.97 

In the event of real materials wi th stra in-hardening, eqn. (7.6) 

is not t r u e in a s t r i c t sense. The p l a s t i c d i s t o r t i o n around the 

indentor i s non-uni form and d i f f e r e n t elements harden by d i f f e r e n t 

ammounts. Mean equ iva len t values of Y need to be used in eqn. (7.6); 

d e t e r m i n a t i o n of t hese mean va lues i n v o l v e s n e c e s s a r i l y an 

approximation and a cer ta in degree of error . Nevertheless for metals 

which are heavily pre-strained the error w i l l be smal l , as: 

a) the slope of hardening has diminished considerably; 

b) the i n d e n t a t i o n s t r a i n s are smal l w i t h r e l a t i o n to the e x i s t i n g 

s t ra ins . 

The area around the f o l d s in which microhardness t e s t s were 

p e r f o r m e d has very h i g h s t r a i n s , i n gene ra l upwards of 0.5. 

Cal ibrat ion data for the der ivat ion of a l inear re la t ionship between 
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B) fllCROHARDNESS CONTOUR MAP (KG/MM2) 

FIGURE 7-1: TYPICAL RESULTS OF fllCROHARDNESS TESTS ON CRUMPLED TUBE SECTIOM 
(0D=38-lmn) 1b=l-67mm, L=50-8m^ (TUBE GEOMETRY C) 



Hm and Y were obta ined from microhardness t e s t s in t r a n s v e r s a l 

sec t ions of an annealed HE30 necked tens ion bars (chapter 6). This 

re lat ionship is va l i d as well for HT30, which a f te r annealing has the 

same mechanical propert ies as HT30 (see section 7.3.2.1). 

For each sec t ion of the necked bar the s t r a i n can be computed 

from eqn. (6.8); from the s t ress-s t ra in re lat ionship of the mate r ia l , 

eqn. (6.20), a value f o r the s t reng th Y was found ( tab le 7.2). A 

l i n e a r regress ion was then performed through the (Hm Y) data po in ts 

( f igure 7.5). For the least squares f i t the point corresponding to the 

unstrained material has been disregarded as the region of in terest is 

at high s t ra ins . The re la t ionship obtained, 

Y = -38.5 + 0.35Hm ( M P a ) ( 7 # 7 ) 

was then used to der ive contour maps of the s t ra i n -ha rdened f l ow 

s t ress Y ( f i gu res 7.13, 7.18 and 7.23), which cou ld be compared 

d i rec t l y to those obtained from the computational model. 

Section 

0 

1 

2 

3 

4 

5 

6 

Microhardness(*) 

Hm(MPa) 

384 

493 

522 

509 

540 

565 

638 

Original 
Diameter 

Do(mm) 

31.7 

16.2 

16.2 

16.1 

16.1 

16.0 

16.0 

Deformed 
Diameter 

D(mra) 

31.7 

15.0 

14.8 

14.3 

14.0 

12.4 

9.2 

Strain 

e=-2Ln(D/D0) 

0.00 

0.15 

0.18 

0.24 

0.28 

0.51 

1.11 

Yield 
Strength 

Y=181.7e.159 

59.4(**) 

134.4 

138.3 

144.8 

148.4 

163.2 

184.7 

(*) Microhardness values averaged from a minimum of 6 measurements 

along two perpendicular radiuses of each section 

(**) Strength for unstrained material corresponds to i n i t i a l y i e l d 

Tabl e 7.2: Microhardness, s t r a i n and s t ress values on t r a n s v e r s a l 

sec t ions of necked HE30 tens ion bar f o r c a l i b r a t i o n of 

Microhardness-strength re la t ionsh ip 
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7.3.2 NUMERICAL MODEL 

The a x i a l co l l apse of tubes was s imu la ted us ing the 2-D 

numerical code descr ibed in chapter 4. Ax isymmetr ic cont inuum MTQC 

elements (sec t . 4.2.3) were used under an e x p l i c i t t ime-march ing 

procedure. 

The tubes were crushed between two p l a t e n s ; the bottom one was 

f i x e d , w h i l e the top p la ten moved downwards, causing the tube t o 

c o l l a p s e . The p l a t e n s , as the res t of the t ube , were model led w i t h 

axi symmetric continuum elements. In teract ion between platens and tube 

as we l l as between tube f o l d s themselves was considered through 

numerical contacts (sec t ion 4.8). 

In order f o r the c a l c u l a t i o n s t o be mean ing fu l , i t must be 

checked t h a t ax isymmetr ic de format ions are to be expected f o r the 

p a r t i c u l a r tube geometry, e.g. by l o c a t i n g the app rop r i a te po in t in 

the collapse c l ass i f i ca t i on chart ( f igure 7.2). Non-axisymmetric modes 

of co l l apse such as the diamond mode cannot be s i m u l a t e d , as ax ia l 

symmetry of deformat ion i s imposed by the model. The analyses 

performed here a l l corresponded to experimental ly observed concertina 

f a i l u r e s . 

Apart from the axial symmetry, no fu r ther numerical constra ints 

were imposed upon the model, being comple te ly f r ee to develop i t s 

preferred form of collapse (e.g. simultaneous, sequential) as well as 

the number and length of f o l d s . No geomet r ica l i m p e r f e c t i o n s were 

introduced to t r igger of f buckling modes. 'Natural ' imperfect ions were 

provided by the random numerical roundoff er rors . 

The axial collapse of tubes is a f a i r l y re l i ab le and repeatable 

mechanism (e.g. Ghani, 1982), i n d i c a t i n g l i t t l e s e n s i t i v i t y to 

imperfect ions. In the numerical model, the imperfections depend on the 

precision of the f l oa t i ng point a r i thmet ic . A check was done, running 

the same tube collapse model (TUBE7, see table 7.4), on a CRAY-IS (64-

b i t f l oa t i ng point words) and on a VAX 11/785 (32-bi t f l o a t i n g point 

words). Results obtained were substant ia l l y i den t i ca l . The deviat ion 

from the energy balance condit ion was larger on the VAX (0.15% error 

versus 0.005% e r r o r on the CRAY), but s t i l l w i t h i n very acceptable 



l i m i t s . 

7.3.2.1 DISCRETIZATION AND MATERIAL 

Discret izat ions wi th varying fineness were used for the analyses. 

The meshes employed may be grouped in to the fo l lowing categories: 

" Coarse mesh, 3 q u a d r i l a t e r a l MTQC elements through the thickness, 

approximate aspect ra t i o 2:1 ( largest dimension a x i a l l y ) ; 

" Medium mesh, 3 quadr i la tera l MTQC elements through the thickness, 

approximate aspect ra t i o 1:1; 

- Fine mesh, 4 q u a d r i l a t e r a l MTQC elements through the thickness, 

approximate aspect ra t i o 1:1. 

The p la tens were d i s c r e t i z e d w i t h two CST elements each in a l l 

cases. They were assumed i n f i n i t e l y r i g i d , i.e. no deformations were 

allowed. 

Symmetric contacts (sect . 4.8) were used f o r the i n t e r a c t i o n 

between oppos i te wa l l s i n the tube f o l d s . Each i n t e r a c t i n g node i s 

inc luded in two s imul taneous numerical c o n t a c t s : f i r s t l y as an 

i n t r u d e r on the opposi te s i d e , and secondly as par t of a t a r g e t s ide 

being penetrated by the node opposite. This ensures f u l l y symmetrical 

behaviour in the in ter face algori thms. 

For the contacts between tube and p la tens only the tube nodes 

were considered as i n t r u d e r s ; the lack of i n t e r m e d i a t e nodes in the 

p la tens would have prevented o the rw i se . However, t h i s i s not 

undesirable, as the contact between deformable tube and r i g i d platen 

is natura l ly asymmetric. 

For the material model, an e l as t i c - p l as t i c iso t rop ic Von Mises 

idea l iza t ion was used. E las t i c parameters were 

Elast ic modulus, E 67000 MPa 

Poisson's ra t i o v 0.3 

Strain-Hardening was considered wi th the power law obtained in chapter 



6 (eqn. 6.20): 

Y •= 181.7 e u - i o y (MPa) 

The above hardening law was derived for HE30 annealed Aluminium bars. 

HE30 and HT30 materials are ident ica l aluminium a l loys , except for the 

fact that HE30 comes in bars (extruded), whereas HT30 comes in tubes 

(drawn). A f t e r being annealed both m a t e r i a l s can be assumed to have 

the same mechanical behaviour. 

In e f fec t , dif ferences due to cold-working may be banished in the 

anneal ing process. According to C o t t r e l l (1975), "work-harden ing is 

caused by t h e mutua l o b s t r u c t i o n of d i s l o c a t i o n s g l i d i n g on 

in te rac t ing systems". The anneal ing t rea tmen t produces recovery and 

rec rys ta l l i za t i on processes. The recovery allows dis locat ions to move 

out of the s l i p planes, disentangl ing and t idy ing-up the cold-worked 

s t ruc ture , while the rec rys ta l l i za t i on replaces the cold-worked grains 

by a new set of more perfect grains, giv ing complete softening. As on 

the other hand the differences due to cold-working were only minor, i t 

is j u s t i f i e d to assume the cons t i t u t i ve laws derived for annealed HE30 

va l id for HT30 tubes as we l l . 

7.3.2.2 VELOCITY SCALING (see also section 4.1.1) 

E x p l i c i t t ime-march ing procedures by t h e i r nature can only 

perform dynamic analyses. Quasi-stat ic or slow loading problems could 

be solved in real t i m e , but u s u a l l y t h i s becomes too expensive. For 

reasons of numerical s t a b i l i t y the maximum t ime-step is l i m i t e d by the 

Courant c r i t e r i o n , which is independent of the ve loc i ty of loading. In 

q u a s i - s t a t i c analyses such as these the c a l c u l a t i o n s need to be 

speeded up, which may be done by a r b i t r a r i l y increasing the ve loc i ty 

of deformat ion in the numerical model; t h i s i s c a l l e d " v e l o c i t y 

sca l ing" . 

For these calculat ions the crushing ve loc i ty employed was 20 m/s, 

r e p r e s e n t i n g an i n c r e a s e of 5 o r d e r s o f magn i tude f r om t h e 

exper imenta l v e l o c i t y . I t w i l l be seen (sec t ion 7.3.4.2) t h a t the 

overshoots and d i s t o r t i o n in t roduced by t h i s amount of v e l o c i t y 



s c a l i n g were s m a l l . As t h e r e was no s t r a i n - r a t e h a r d e n i n g i n t h e 

m a t e r i a l , t h e on l y a d d i t i o n a l s a f e g u a r d needed was t o ensure t h a t 

dynamic e f f e c t s c o n t i n u e d t o p l a y a s m a l l r o l e i n t he mechan ica l 

de format ion process. Some c r i t e r i a to quan t i f y t h i s r o l e were given in 

s e c t i o n 6 . 5 . 1 . 

The dynamic fo rces i nvo lved i n the conce r t i na c rump l i ng may be 

assessed w i t h the f o l l o w i n g s imp le c o n s i d e r a t i o n s . F igure 7.6 shows a 

wa l l sec t ion in a tube which i s being crumpled w i t h an ax ia l v e l o c i t y 

v. The p o r t i o n o f t h e t u b e a l r e a d y c r u m p l e d (be low A) i s s t a t i o n a r y , 

the undeformed p o r t i o n above C moves w i t h v e l o c i t y v, and the f o l d i n g 

p o r t i o n between A and C i s b e i n g d e c e l e r a t e d f r o m v t o 0. T h i s 

d e c e l e r a t i o n occurs i n a t i m e ( h - 2 t 0 ) / v > h b e i n g t n e f o i d l e n g t h and 

t o t h e w a l l t h i c k n e s s ; t h e average i n e r t i a f o r c e necessary i s , by 

v i r t u e of Newton's second law, 

P-i = 7 T D t 0 p h v 2 / ( h - 2 t 0 ) (7 .8 ) 

where D i s the mean tube Diameter and p i s the mass dens i t y . Hence the 

average dynamic forces grow w i t h the square of the c rush ing v e l o c i t y , 

a l l o ther f ac to r s being constant f o r a p a r t i c u l a r t u b e . 

The t o t a l fo rce F exer ted at the bottom sur face equals the fo rce 

n e c e s s a r y f o r c r u m p l i n g f e l t a t D, PC j p l u s t h a t necessary f o r 

d e c e l e r a t i n g the f o l d ABC, P i : 

p = pc + P i = Pc + 7 T D t 0 p v 2 h / ( h - 2 t 0 ) ( 7 .9 ) 

The deformat ion v e l o c i t y v used in the c a l c u l a t i o n s was chosen so 

as t o produce acceptably smal l dynamic d i s t o r t i o n s (Pi < 5%Pc'* T n e s e 

dynamic e f f e c t s are q u a n t i f i e d in sec t ion 7.3.4.2, where the i n f l uence 

of the v e l o c i t y s c a l i n g i s d iscussed. 

7 .3 .2 .3 INTERPRETATION OF OUTPUT 

L o a d - c o m p r e s s i o n c u r v e s o b t a i n e d f r o m n u m e r i c a l a n a l y s i s 

needed some p o s t - p r o c e s s i n g ( a v e r a g i n g and f i l t e r i n g ) i n o r d e r t o 

f a c i l i t a t e t h e i r i n t e r p r e t a t i o n . 
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F i r s t l y , a rep resen ta t i ve value of the load was taken as the 

average between the loads measured at the top and bottom p la tens at 

each instant . In a quas i -s ta t ic s i tua t ion the di f ference between both 

measurements would be neg l ig ib le . Here, due to the ve loc i ty sca l ing, 

there were f i n i t e , a l though s m a l l , d i f f e rences between the two end 

loads. 

Secondly, h igh- f requency o s c i l l a t i o n s in the load h i s t o r i e s 

ar is ing from stress-wave propagation between the two extremes of the 

specimen were f i l t e r e d out, using a centred moving average f i l t e r (see 

below). Again in a t r u e q u a s i - s t a t i c model t h i s would not be 

necessary; for each load increment, the new displacements are those 

that f u l f i l l s ta t ic equ i l ib r ium. I t is assumed that the stress waves 

have t r a v e l l e d back and f o r t h along the specimen many t i m e s , 

red i s t r i bu t i ng stresses, and eventually damped out. 

The v e l o c i t y of de fo rmat ion has been g r e a t l y increased here, 

while the information (stress waves) continues to be t ransmi t ted at 

the same speed. On the other hand, there are steep changes in load due 

to the buck l ing i n s t a b i l i t i e s and rap id v a r i a t i o n s in boundary 

c o n d i t i o n s ( con tac t - impac t ) . Whereas in the real - slow loaded -

specimen there i s s t i l l t ime f o r numerous s t ress waves to t r a n s m i t 

these changes smoothly enough, here they are t ransmi t ted more abruptly 

as f i n i t e amplitude dynamic pulses, occasioning v i s i b l e osc i l l a t i ons 

in the load curves. As long as the ampl i tude of these o s c i l l a t i o n s 

remains small re la t i ve to the to ta l loads, t h e i r d i s t o r t i v e inf luence 

is not important, and the underlying trend in the load curves may be 

recovered by f i l t e r i n g them out. 

High frequency f i l t e r (centred moving average) 

Centred moving average techniques are s imple and e f f e c t i v e f o r 

high frequency f i l t e r i n g . From a given t ime series x̂  t -j=i to N, wi th 

constant t ime in terval At, a new f i l t e r e d t ime series is defined as 

i+M 

Yi = 1 / xj M<i<N-M ( 7 . 1 0 ) 
2M+1 i-M 

This f i l t e r removes frequencies higher than l/(2MAt). The values 
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of M were chosen so as t o remove o s c i l l a t i o n s occasioned by s t r e s s -

wave propagation. 

7.3.3 RESULTS FROM NUMERICAL CALCULATIONS AND EXPERIMENT 

Numer i ca l r e s u l t s are p r e s e n t e d here and compared w i t h 

experiment, fo r the axial col lapse of 4 d i f f e ren t tube geometries: 

- Tube geometry A, ID=19.05mm, t0=1.64mm, L=50.8mm; 

- Tube geometry 6, ID=19.05mm, t0=1.17mm, L=50.8mm; 

- Tube geometry C, 0D=38.10mm, t0=1.65mm, L=50.8mm; 

- Tube geometry D, 0D=25.40mm, to=0.95mm, L=25.4mm. 

Other a u x i l i a r y c a l c u l a t i o n s were necessary f i r s t in order to 

t e s t the i n f l uence of var ious parameters and cho ices : 

- velocity of deformation; 

- mesh refinement; 

- friction; 

- element type. 

Resul ts from these a u x i l i a r y c a l c u l a t i o n s are discussed in sec t ion 

7.3.4. In t o t a l over 20 c a l c u l a t i o n s of the complete tube c rump l i ng 

process for 6 d i f fe ren t tube geometri-es (table 7.4) were car r ied out 

successful ly. 

Mesh ref inement was found to have an impor tan t e f f e c t upon the 

r e s u l t s (sect ion 7.3.4.3). However, due to the high computer costs 

involved in these analyses, some of the meshes used could not have the 

maximum desirable fineness. Two of the models presented below have a 

" f ine" mesh, while the other two have "medium" meshes. 

The numerical p r e d i c t i o n s are presented toge the r w i t h the 

corresponding exper imenta l r e s u l t s . The t e s t s were descr ibed i n 

sec t i on 7 . 3 . 1 . 

The computer used f o r the numerical work was a CRAY-IS of the 

University of London. Central Processing Unit (CPU) times quoted refer 



to th is machine. 

7.3.3.1 TUBE GEOMETRY A: ID=19.05mm, to =1.64mm, L=50.8mm 

A " f i n e " mesh was used f o r t h i s a n a l y s i s , compr i s ing 633 nodes 

and 996 t r i a n g u l a r c e l l s ( f i g . 7.7.a). The c a l c u l a t i o n proceeded f o r 

95789 t i m e - s t e p s , up to an a x i a l compression of 37.5mm, fo rm ing 3 

concertina fo lds : f i r s t l y at the bottom end, then at the top, f i n a l l y 

i n the middle ( f i g . 7.7b). CPU t ime f o r t h i s c a l c u l a t i o n was 8641 

seconds. 

In the experiment, the tube collapsed forming 3 concertina folds 

as w e l l , w i t h a shape very s i m i l a r t o the numer ical p r e d i c t i o n 

( f i gu res 7.8, 7.9). Figure 7.10 con ta ins the load-compress ion curves 

(numerical and expe r imen ta l ) , which show a remarkable agreement. 

Average co l lapse loads were 12.2 kN f o r the c a l c u l a t i o n s and 11.9 kN 

f o r the exper iment . The succession of peaks and v a l l e y s i n the load 

curves is due t o the a l te rnancy between a x i a l compression ( s t i f f e r 

peaks) and bending (less s t i f f val leys) mechanisms. The snapshot views 

of the mesh at d i f f e ren t points included in f igure 7.10 conf irm th is 

exp lana t i on , p rov i d i ng a d e t a i l e d d e s c r i p t i o n of a phenomenon 

p rev ious ly observed expe r imen ta l l y in a f o r ce fu l l y more qua l i t a t i ve 

manner (Ghani, 1982). 

The numerical load-compression curve in f igure 7.10 was obtained 

by averaging and f i l t e r i n g the raw data as exp la ined in sec t i on 

7.3.2.3. To show the e f f e c t of t h i s a v e r a g i n g - f i l t e r i n g process, 

indiv idual load curves obtained d i rec t l y at the top and bottom platens 

are presented in f igure 7.11. These curves show some small t rans ient 

imbalances due to the ve loc i t y s c a l i n g . The unde r l y i ng q u a s i - s t a t i c 

t rend is seen more c l e a r l y when t h i s noise is f i l t e r e d out ( f i g . 

7.10). 

The various energy components were monitored (sect. 4.10) during 

the c a l c u l a t i o n s ( f i g . 7.12). the energy of de fo rmat ion in f i g . 7.12 

comprises p l a s t i c work, recoverable e l a s t i c energy, and energy 

dissipated through f r i c t i o n (some 1.4% of the p las t i c work at the end 

of the analysis). In order to provide a check for the s t a b i l i t y of the 
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computa t ions , the work done by the ex te rna l fo rces was computed 

independently and compared to the sum of the deformation and k ine t ic 

energies. Within the precision of the f igures (5 d i g i t s ) no di f ference 

was perceived between both values, ind icat ing absence of i n s t a b i l i t i e s 

and soundness of numerical in tegrat ion algori thms. 

Contour maps of the Von Mises f low stress (Y), from the numerical 

model and experiments, are presented in f igure 7.13. The experimental 

data were der ived from microhardness t e s t s , as l a i d out in sec t ion 

7.3.1.3. S i m i l a r pa t te rns and l e v e l s of s t ress can be observed f o r 

both cases, although somewhat steeper gradients and a wider range of 

values is appreciable for the experiment. This is due on the one hand 

to the higher curvature for the experimental f o l d selected, and on the 

other hand to the re la t i ve coarseness of the numerical mesh. Agreement 

f o r a l l these loca l e f f e c t s would need an i n o r d i n a t e degree of mesh 

re f inement . Consider ing the u n c e r t a i n t i e s of the microhardness 

measurements and of t h e i r c o r r e l a t i o n to the m a t e r i a l s t r e n g t h , Y, 

th is level of agreement was deemed very good. 

7.3.3.2 TUBE GEOMETRY B: ID=19.05mm, t0=1.17mm, L=50.8mm 

This problem was d i s c r e t i z e d w i t h a mesh of medium f i n e n e s s , 

compr is ing 532 nodes and 784 t r i a n g u l a r c e l l s ( f i g u r e 7.14a). 99503 

computational t ime-steps were needed for an axial compression of 40 

mm. 3 f u l l concertina folds plus a four th incomplete fo ld were formed 

( f i g u r e 7.14b). The order of f o rma t i on was: bot tom, t o p , second from 

bottom, second from top. CPU time consumed was 7176 seconds. 

In the corresponding experiment 4 f u l l fo lds were formed in the 

tube ( f i gu res 7.15, 7.16). The discrepancy between exper iment and 

c a l c u l a t i o n in the f o u r t h f o l d arose from an o v e r p r e d i c t i on of the 

f o l d leng th in the numerical model. The f i r s t 3 f o l d s spanned an 

excessive tube length, not leaving enough for the natural formation of 

a f o u r t h f o l d . The reason f o r t h i s o v e r p r e d i c t i o n i s an excess 

s t i f fness of the model, caused by the coarseness of the d i sc re t i za t ion 

employed. Convergence towards the experimental behaviour was observed 

from a previous ana lys i s of t h i s same problem w i t h a coarse mesh 

(sec t ion 7.3.4.3). No f u r t h e r re f inements of the mesh were performed 
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Rigid Platens 

b) Mesh after 40mm axial compression 

(•iqure 7.14: Calculations for axial collapse of tube 
ID=19.05mm, to=l.l7mm, L=50.8mm, tube geometry B 



AXIAL COLLAPSE 
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Figure 7.15: View of crumpled tube (geometry B) 
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Figure 7.16: Section of crumpled tube (geometry B) 



in order to avoid excessive computer costs. 

Fur ther i n s i g h t i n t o the behaviour of the model may be gained 

from the load-compression curves ( f i g u r e 7.17). S i m i l a r load l e v e l s 

and pa t te rns of r i ses and f a l l s in the curves were obta ined in 

experiment and ca lcu la t ion . However, the separation between successive 

peaks is greater for the numerical model, ind ica t ing longer fo lds . For 

the last f o l d the length of tube remaining is too short. A very s t i f f 

f i na l fo ld is then formed, wi th a large degree of shear deformation. 

Computed load levels become here much greater than experimental ones. 

Nei ther the i n d i v i d u a l u n f i l t e r e d load-compress ion curves f o r 

both p la tens nor the energy balance graph, given f o r the prev ious 

ana lys i s (tube geometry A)in f i g s . 7.11 and 7.12, are given f o r t h i s 

or the fo l lowing tube analyses (geometries B, C, D). The story t o l d by 

these graphs is much the same as for tube geometry A. 

Numerical and experimental contour maps of Von Mises st rength, Y, 

are given in f i g u r e 7.18. As f o r tube geometry A, s i m i l a r l e v e l s and 

pa t te rns of s t ress may be apprec ia ted in both maps. Again , the 

gradients for the experimental contours are steeper. 

7.3.3.3 TUBE GEOMETRY C: 0D=38.1mm, t0=1.65mm, L=50.8mm 

A " f i ne " mesh was used f o r t h i s a n a l y s i s , w i t h 633 nodes and 996 

t r iangu lar ce l l s . The i n i t i a l and f i na l conf igurat ions of the mesh may 

be seen in f i g u r e 7.19. One concer t i na f o l d was formed at e i t h e r end 

of the tube. As for the previous analysis, the length of the folds was 

ove rp red i c ted , l eav ing too l i t t l e tube leng th l e f t f o r the proper 

formation of a t h i r d f o l d in the middle. Although at one point i t did 

seem t h a t a t h i r d shor te r f o l d would be fo rmed, e v e n t u a l l y t h i s 

mechanism proved too s t i f f and the model f a i l e d through shear near the 

top. 

The experimental resul ts did not show th i s behaviour, producing 3 

complete f o l d s ( f i gu res 7.20 and 7.21). The load-compress ion curves 

( f igure 7.22) show tha t , although somewhat t ranslated to the r ight for 

the ca lcu la t ions, a great s i m i l a r i t y exists between the experimental 
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xlOMPa 

a) from numerical c a l c u l a t i o n s 

b) from microhardness t e s t s 

Figure 7.18: Contours of y i e l d s t r e n g t h in crumpled tube sec t i on 
(ID=19.05mm, t Q = i . |7mm, L=50.8mm Tube) (geometry B) 
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Figure 7.20: View of crumpled tube (geometry C) 

AXIAL COLLAPSE 
00=38.lmm, t0=1.65mm, L=50.8mm TUBE 

Figure 7.21: Section of crumpled tube (geometry C) 
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and numerical load pa t te rns f o r the f i r s t f o l d . The de fo rmat ion 

process can be c lear ly understood by examining the snapshot views of 

the mesh inc luded in f i g u r e 7.22. At po in t A in the f i g u r e , a f t e r the 

b ending and s l i d i ng of the top edge, contact has been made between the 

outer wa l l of the tube and the top p l a t e n , occas ion ing a sharp 

increase in load. The edge then separates s l i g h t l y from the top platen 

leaving only the outer f o l d surface in contact wi th the platen. With 

fur ther compression the fo ld continues to bend u n t i l the bottom part 

of the f o l d h i t s the top edge. This produces a r i p p l e c l e a r l y 

no t i ceab le i n both exper imenta l and numerical load curves (B). The 

bottom part of the f o ld then pushes the edge up u n t i l contact wi th the 

top p la ten i s renewed. The load increases s teep ly f o r a moment when 

the tube deforms in ax ia l compress ion, u n t i l the bottom edge s t a r t s 

s l i p p i n g (C) and bending t o form another f o l d (D). The l a s t f o l d i s 

ready to be formed at E, but the remaining tube length has become too 

shor t . A yery high load i s necessary, which even tua l l y l e v e l s o f f as 

shear f a i l u re occurs. 

The numerical and exper imenta l maps of Von Mises s t reng th (Y), 

given in f i g u r e 7.23, i n d i c a t e again s i m i l a r s t ress d i s t r i b u t i o n s 

around a f o l d . They a lso show the same pa t t e rn as the two prev ious 

analyses. 

7.3.3.4 TUBE GEOMETRY D: 0D=25.4mm, to =0.95mm, L=25.4mm 

The mesh employed for th i s problem was of medium fineness, w i th 

332 nodes and 484 t r i a n g u l a r c e l l s ( f i g u r e 7.24a). A drawing of the 

deformed mesh a f te r an axial compression of 20.2 mm is given in f igure 

7.24b, showing 2 concer t i na f o l d s . 53554 computa t iona l cyc les were 

performed, using 2664 CPU seconds. 

the experimental resu l t s , shown in f igures 7.25 and 7.26, proved 

again to be s l i g h t l y less s t i f f than the computational model. In the 

exper iment , a f t e r the f i r s t 2 f o l d s , some ex t ra leng th remained t o 

form another h a l f f o l d . Load compression curves f o r exper iment and 

c a l c u l a t i o n s are given in f i g u r e 7.27. In a way the comparat ive 

behaviour here i s the inverse of t h a t repor ted f o r the previous two 

analyses. Here i t is in the experiment where a shorter length of tube 
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a) from numerical c a l c u l a t i o n s 

b) from microhardness t e s t s 

Figure 7.23: Contours of y i e l d s t r eng th Y in crumpled tube sec t i on 

(0D=38.lmm, t =I.64mm, L=50.8mm Tube)(geometry C) 
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Figure 7.26: Section of crumpled tube (geometry D) 
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remains at the end, occasioning s t i f f e r behaviour. The s t i f f en ing is 

not so t rag ic though, because the extra length occurs at one end; t h i s 

end eventually sl ipped towards the outside rounding of f i t s inner edge 

through f r i c t i o n w i t h the p l a t e n . The numerical model does not have 

enough de f i n i t i on to represent these edge e f fec ts . I t se t t les for two 

s l i g h t l y longer fo lds than what would be preferred. 

the e v o l u t i o n of the load curves ( f i g . 7.27) f o r the f i r s t f o l d 

show again the same s i m i l a r i t i e s between experiment and calculat ions 

as f o r tube geometry C (sect . 7.3.3.3), and they may be exp la ined in 

i d e n t i c a l fash ion (po in ts A,B,C,D,E,F in f i g . 7.27). 

7.3 .4 PARAMETRIC STUDIES IN NUMERICAL ANALYSES 

The i n f l uence of the f o l l o w i n g parameters and 

modelling choices upon ca lcu la t ion resul ts is s tud ied: 

- Coeff ic ient of f r i c t i o n for tube-tube and tube-platen contacts; 

- Velocity sca l ing; 

- Mesh refinement; 

- Element type. 

The aim i s to ob ta in numerical feedback, in order to se lec t the 

c h a r a c t e r i s t i c s of the models t o be employed i n the numer ical 

analysis. 

Some of the analyses presented here correspond to tube geometries 

already mentioned in section 7.3.3 (A,8,C,D); there the f i na l analyses 

were presented. Here the resul ts of pre l iminary analyses (table 7.4) 

are considered. 

7.3.4.1 INFLUENCE OF FRICTION 

A Coulomb law of f r i c t i o n was used in the numerical model 

(sec t ion 4.8.1). The t a n g e n t i a l f o rce Ft a t t n e i n t e r f a c e i s l i m i t e d 

by the normal fo rce between the sur faces in c o n t a c t , Fn> anc( t n e 

coefficient of f r i c t i on , fi: 



F t 4 ^ F n (7 .11) 

An experimental determination of the f rac t iona l behaviour of the 

surfaces and m a t e r i a l s i nvo lved was not a t tempted w i t h i n t h i s 

i n v e s t i g a t i o n . In a s t r i c t sense, the pe r fec t f r i c t i o n given by the 

Coulomb law is not appl icable for a l l types of surfaces and arb i t ra ry 

acting normal pressures (Curnier, 1984). This idea l i za t ion represents 

an approximation to the f r i c t i o n phenomenon, consistent wi th our lack 

of knowledge and experimental data about i t . 

The inf luence of the var ia t ion of the coe f f i c i en t of f r i c t i o n was 

studied by performing several tube collapse analyses on the same model 

(Tube geometry E, f i g . 7.28). Values f o r \i ranged between 0.0 

( f r i c t i on less ) and 0.3. The resul ts are summarized in f igures 7.29 and 

7.30. For comparison, the corresponding experimental resul ts are also 

included in f igure 7.29; the collapse geometry obtained experimental ly 

consisted of 3 1/2 concertina fo lds. 

The collapse of the f r i c t i o n l e s s model was considerably d i f f e ren t 

from the other models and from the exper imenta l r e s u l t s , producing 

only two large concertina fo lds . The other models a l l produced three 

folds and load-compression curves s im i l a r to each other. The resul ts 

f o r ju. = 0.2 and [i= 0.3 were p a r t i c u l a r l y c l ose . A tendency f o r 

shor te r f o l d lengths i s observed as f r i c t i o n decreases. This can be 

a t t r i b u t e d t o edge e f f e c t s , cons ide r i ng t h a t f o r t h i s p a r t i c u l a r 

problem two out of the th ree f o l d s occur at the tube ends, where the 

constraint is smaller the less f r i c t i o n between tube and platen. 

The reason for the di f ference between experimental and numerical 

r e s u l t s i s t h a t the numerical model was i n s u f f i c i e n t l y r e f i ned in 

terms of the "coarse" mesh used and v e l o c i t y s c a l i n g (40m/s p la ten 

v e l o c i t y ) . As w i l l be seen in f u r t h e r s e c t i o n s , more r e f i n e d models 

are necessary f o r good p r e d i c t i o n s . However, f o r the paramet r i c 

s tud ies a la rge number of computer analyses was necessary, and cost 

considerations forced compromises in the model refinement. 
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a) u=0.0 (TUBED 

b) p=0.1 (TUBE2) 

c) M=0.2 (TUBE3) 

d) u=0.3 (TUBE4) 

TUBE GEOMETRY E 

Figure 7.30, FINAL DEFORMED MESHES FOR DIFFERENT VALUES OF FRICTION (u) 

0D=38.Imm, t,= 1.22mm, L=50.8mm TUBE COLLAPSE ANALYSIS 
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7.3.4.2 INFLUENCE OF VELOCITY SCALING 

The c a l c u l a t i o n s presented in sec t ion 7.3.3 a l l had an ax ia l 

v e l o c i t y of de fo rmat ion of 20 m/s, rep resen t ing a s c a l i n g up of the 

experimental ve loc i t ies of f i ve orders of magnitude. Some results are 

presented here studying the inf luence of varying the crushing ve loc i ty 

in the model, j u s t i f y i n g the choice made f o r the f i n a l analyses in 

section 7.3.3. 

Three analyses were performed wi th ve loc i t i es of 10, 20, and 40 

m/s on the same model as sec t . 7.3.4.1 (tube geometry E, f i g . 7.28). 

The value of the f r i c t i o n c o e f f i c i e n t was se lec ted as [i= 0. 2. The 

resul ts are summarized in f igures 7.31 and 7.32. A ramp was introduced 

in the applied veloc i ty h istory for the beginning of the deformation, 

the v e l o c i t y i nc reas ing from 0 t o i t s f i n a l value i n 0.1 msec. This 

was found to produce a smoother s t a r t f o r the de format ion and fewer 

i n i t i a l o s c i l l a t i o n s . 

A l l th ree analyses produced 3 conce r t i na f o l d s in the tube. The 

t h i r d central f o ld was s l i g h t l y shorter fo r 20 m/s and 10 m/s than for 

40 m/s. In the load-compression curves ( f i g . 7.31), some di f ference is 

noticeable when the ve loc i ty is decreased from 40 m/s to 20 m/s, but 

f u r t h e r reduc t ion t o 10 m/s produced very l i t t l e d i f f e r e n c e . The 

average co l l apse loads show a monotonic decrease towards the 

experimental value, again the resul ts fo r 20 m/s and 10 m/s being very 

close. 

The c r i t e r i o n proposed in sec t ion 7.3.2.2 f o r eva lua t i ng the 

dynamic forces involved in the wall crumpling, Pi > maY De u s e d here. 
From equation (7.8), the fo l lowing resul ts were obtained: 

v=40 m/s Pi=0.737 kN (8.2% of Pc*P t ) 

v=20m/s Pi=0.184 kN (2.0% of Pc* p t ) 

v=10m/s Pi=0.046 kN (0.5% of Pc* p t ) 

Judging from these resu l ts , a ve loc i ty of 20 m/s was selected for 

the f i n a l analyses. The i n e r t i a fo rces in t roduced by t h i s v e l o c i t y 

scaling were smal l . Only marginal improvements are produced when the 

veloc i ty is fu r ther reduced, whi le computational costs grow rapidly 
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a) v=40m/s. MTQC ELEMENTS (TUBES) 

b) v=20m/s. MTOC ELEMENTS (TUBE?) 

c) v=10m/s, MTQC ELEMENTS (TUBE8) 

d) v=40m/s. MTQ ELEMENTS (TUBE6) 

(TUBE GEOMETRY E) 

Figure 7.52, FINAL DEFORMED MESHES FOR VARIOUS CRUSHING VELOCITIES AND 

ELEMENT TYPES - 0D=38.1mm. t.= 1.22mm. L=50.8mm TUBE COLLAPSE 
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(1758 CPU sees, for 20m/s, 3474 CPU seconds for 10 m/s). 

7.3.4.3 INFLUENCE OF MESH REFINEMENT 

The i n f l u e n c e of mesh re f inement in th ree d i f f e r e n t cases was 

studied (tube geometries A, B, and C). These models have already been 

discussed in section 7.3.3, where resul ts for the more ref ined meshes 

considered here were given. 

For tube geometry B ( f i g . 7.14a, sec t . 7.3.3.2), two analyses 

w i t h "coarse" and "medium" meshes were done; some r e s u l t s are 

p r e s e n t e d i n f i g u r e s 7.33 and 7.34. As can be seen , t h e mesh 

refinement had a dramatic inf luence, increasing the number of folds 

from 3 (coarse mesh) to 4 (medium mesh), more in l i n e w i t h the 

exper imenta l r e s u l t s . The load-compression curve shows c l e a r l y the 

shor te r length of f o l d s f o r the more r e f i n e d model. S t i l l the f o l d 

length was s l i g h t l y overpredicted for the medium mesh, the 4th f o l d 

being a very shor t and s t i f f one which e v e n t u a l l y f a i l s by shear. 

Further refinement of the mesh would probably achieve better resu l ts . 

For tube geometry A (sec t . 7.3.3.1, f i g . 7.7a) th ree d i f f e r e n t 

mesh grades were used: "coarse" , "medium" and " f i n e " . The r e s u l t s , 

presented in f i g u r e s 7.35 and 7.36, are very i l l u s t r a t i v e ; mesh 

ref inement produces a c l e a r and cons i s t en t convergence towards the 

less s t i f f experimental values. The fo ld lengths are indicated by the 

p o s i t i o n of the v a l l e y s in the load-compress ion cu rve ; these are 

c o n s i s t e n t l y s h i f t e d towards the l e f t as the mesh is r e f i n e d , 

i nc reas ing the a v a i l a b l e leng th f o r the l a s t f o l d . As t h i s l a s t f o l d 

grows nearer to i t s "natural" unconstrained length, the energy - and 

thereby the force - involved in i t s formation decreases. A monotonical 

approximation of the load levels produced in the las t fo ld towards the 

experimental values is apparent as the mesh is re f ined. 

L a s t l y , f o r tube geometry C (sec t . 7.3.3.3, f i g . 7.19a), "coarse" 

and " f ine" mesh analyses were performed. The resul ts ( f i gs . 7.37,7.38) 

fo l low a s im i la r pattern to those out l ined for the previous two cases: 

a decrease in the ove rp red ic ted s t i f f n e s s and f o l d leng th w i t h mesh 

refinement. As for tube geometry B ( f i gs . 7.33, 7.34), the coarse mesh 
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Figure 7.33, INFLUENCE OF MESH REFINEMENT 
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a) COARSE MESH, MTQC ELEMENTS (TUBE10) 

b) MEDIUM MESH, MTQC ELEMENTS (TUBE12) 

I 

c) COARSE MESH, MTQ ELEMENTS (TUBE11) 

Figure 7.34, FINAL DEFORMED VIEWS FOR VARIOUS MESHES AND ELEMENT TYPES 
ID=i9.05mm, t,=l.i7mm, L=50.8mm TUBE (geometry B) 
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a) COARSE MESH. MTOC ELEMENTS (TUBE17) b) MEDIUM MESH. MTQC ELEMENTS (TUBE13) 

c) FINE MESH. MTQC ELEMENTS (TUBE15) d) MEDIUM MESH, MTQ ELEMENTS (TUBE18) 

e) MEDIUM MESH. CST ELEMENTS (TUBE16) 

Figure 7.36, FINAL DEFORMED VIEWS FOR VARIOUS MESHES AND ELEMENT TYPES 
D=19.05mm, t,=1.64mm, L=50.8mm TUBE(geometry A) 
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a) COARSE MESH (TUBE19) 

b) FINE MESH (TUBE21) 

Figure 7.38: FINAL DEFORMED VIEWS FOR VARIOUS DEGREES OF 

MESH REFINEMENT - 0D=38. 1mm, t.= 1.65mm. L=50.8<r 

(tube geometry C) 



model missed one fo ld al together. With the f ine mesh some more length 

was a v a i l a b l e f o r the t h i r d f o l d , and i t s f o rma t i on was a t tempted . 

However the model was s t i l l somewhat o v e r s t i f f ; the leng th of tube 

l e f t over f o r the t h i r d f o l d was too s h o r t , and a shear f a i l u r e 

mechanism was preferred f i n a l l y . 

7.3.4.4 INFLUENCE OF ELEMENT TYPE 

A l l the analyses repor ted above used the Mixed T r i a n g l e -

Q u a d r i l a t e r a l w i t h Cor rec t ion (MTQC) e lements , proposed i n sec t i on 

4.2.3. Here an a t tempt i s made to assess the behaviour of these new 

elements when compared to the previous Mixed T r i a n g l e - Q u a d r i l a t e r a l 

(MTQ) elements (sec t ion 4.2.2) and Constant S t r a i n T r iang les (CST) 

(sect. 4 .2 .1 ) . 

I t was mentioned in sec t ion 3.7.1 t h a t CST meshes impose an 

excessive number of vo lume t r i c c o n s t r a i n t s and t h e r e f o r e become in 

p r a c t i c e a r t i f i c i a l l y s t i f f f o r incompress ib le p l a s t i c f l o w . Mesh 

re f inement does not solve the problem, f a i l i n g to converge towards 

true solut ions. MTQ elements solve th i s problem by reducing the number 

of volumetric const ra in ts , but f o r ^ery l a rge deformat ions t a n g l i n g 

over of the mesh can occur, creat ing unacceptable negative volumes. A 

correct ion to prevent t h i s tangl ing over was proposed in section 4.2.3 

wi th the MTQC elements. 

The convergence of MTQC meshes has been proved i n the prev ious 

sec t ion 7.3.4.3, where success ive ly f i n e r meshes were shown to 

approach monoton ica l l y the exper imenta l r e s u l t s . Never the less , i t 

seems inev i tab le that some s t i f f en ing be introduced by MTQC elements. 

The aim here is to check, for pract ica l large deformation p las t ic f low 

problems, that th i s s t i f f en i ng is smal l . I f so, i t w i l l be proved that 

MTQC elements reta in the advantages of MTQ elements while at the same 

time providing a more robust model. 

I t must be mentioned t ha t a l l the low v e l o c i t y tube co l l apse 

problems considered could be analyzed success fu l l y w i t h MTQ meshes. 

Although in other cases negative volumes did occur (section 7.4.4), no 

problems arose here due to the lack of boundary c o n s t r a i n t s and the 



low deformation ve loc i t i es . 

The "coarse" mesh tube model (tube geometry E, f i g . 7.28a) was 

analyzed wi th MTQ and MTQC elements. Load-compression curves for both 

c a l c u l a t i o n s are shown toge ther w i t h the exper imenta l r e s u l t s in 

f i g u r e 7.39, where l i t t l e d i f f e r e n c e can be apprec ia ted between the 

two ca lcu la t ions. The lower value of the minimum loads at the val leys 

for the MTQ mesh denotes a lower resistance to high curvature bending 

at f o l d s . This i s co r robora ted by i nspec t i on of the deformed shapes 

( f igure 7.32a, 7.32d) 

The same comparison as above was done f o r tube geometry B ( f i g . 

7.14a). Results f o r coarse meshes w i t h MTQ and MTQC elements are 

presented in f i g u r e s 7.40, 7.34a and 7.34c. I t was seen in the 

previous sec t ion 7.3.4.3 t ha t the MTQC coarse mesh f a i l e d t o develop 

the f o u r t h f o l d which was observed in exper iment . A s l i g h t l y b e t t e r 

behaviour in th i s respect was obtained from the MTQ coarse mesh. For 

the f i r s t three folds the length is very s l i g h t l y shorter than for the 

MTQC mesh. Some extra length is l e f t over a f te r the f i r s t three fo lds , 

but s t i l l too short fo r the four th f o l d , evantual ly f a i l i n g in a high 

curva tu re h inge. The improvement however i s f a r f rom t h a t obta ined 

w i t h a f i n e r mesh ( f i g . 7.12b) where a f o u r t h f o l d was formed. Again 

softer bending behaviour is appreciated for MTQ. 

F i n a l l y the e f f e c t of d i f f e r e n t element types was s tud ied f o r 

tube geometry A ( f i g . 7.7a). Ca l cu la t i ons were c a r r i e d out w i t h CST, 

MTQ, and MTQC medium meshes, the resul ts being shown in f igures 7.41, 

7.36b, 7.36d, and 7.36e. The great o v e r s t i f f n e s s of the CST mesh i s 

i mmmediately apparent. The model is completely unable to represent the 

concertina mechanism and buckles in to one large fo ld ( f i g . 7.36e) wi th 

substant ia l ly higher loads ( f i g . 7.41). For the Mixed d iscre t iza t ions 

MTQ and MTQC, no advantage i s apparent f o r MTQ as to f o l d lengths in 

th is case." An excessively soft behaviour in high curvature bending is 

exhibi ted by MTQ elements. 

One p r a c t i c a l disadvantage of MTQ over MTQC elements is t h a t , 

even without developing negative volumes, some t r iangu la r ce l l s may 

become very small i n s i z e . As i t i s c e l l s ize which governs the 

computat ional t i m e - s t e p , t h i s means increased cost of a n a l y s i s . In 
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general i t was found that re f in ing MTQC meshes was a more consistent , 

robust and cheaper method of improving the resul ts than using sof ter 

MTQ meshes. This i s c l e a r l y e x e m p l i f i e d in f i g u r e 7.42, where the 

load-compression r e s u l t s f o r a MTQC f i n e mesh (8641 CPU sec) are 

c lear ly far better than those for a MTQ medium mesh (12882 CPU sec) at 

approximately 2/3 CPU cost. 

7.3.5 DISCUSSION 

The q u a s i - s t a t i c ax isymmetr ic c rump l i ng of tubes has been 

model led s u c c e s s f u l l y . Resul ts f o r four tubes are given in sec t i on 

7.3.3 and compared w i t h exper iments . Genera l ly load-compression 

curves, deformed geomet r ies , and s t ress d i s t r i b u t i o n s showed good 

matching between predict ions and experimental r esu l t s . 

Nevertheless a c o n s i s t e n t tendency f o r o v e r s t i f f s o l u t i o n s i s 

present to a greater or lesser degree in most of the ca lcu la t ions . The 

load levels predicted in the load-compression curves are very close to 

the experimental values, but the predicted fo ld lengths are often too 

great. Two factors may be the cause of these d i f ferences: coarseness 

of the meshes and edge e f fec ts . 

F i n i t e e lemen t s o l u t i o n s g i v e a lways upper bound energy 

approximat ions (Z ienk iew icz , 1977), approaching g radua l l y the t r u e 

so lu t i ons upon mesh re f i nemen t . In sec t ion 7.3.4.3 i t was shown t h a t 

MTQC meshes did converge towards the experimental resu l ts . Some of the 

calculat ions would have benefited from f i ne r meshes, although t h i s was 

not attempted for reasons of cost . 

Edge e f f e c t s played an impor tan t r o l e in most of the problems 

analyzed, where the number of fo lds produced varied between 2 and 4. 

Out of these , 2 f o l d s occur always at the ends and may be heav i l y 

i n f l uenced by the i n t e r a c t i o n between p la ten and edge of tube. A 

complex p l a s t i c de format ion process occurs at the tube edges when 

s l id ing against the platens, creat ing a charac te r is t i c rounded shape 

(f igure 7.43a), which is not modelled properly by the meshes employed 

and the d i s c r e t e contac ts w i t h Coulomb f r i c t i o n ( f i g u r e 7.43b). 

Accurate representation of t h i s phenomenon together wi th the overal l 
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crumpling analysis needs such loca l l y f ine meshes that computations 

would become uneconomic. This edge misrepresentation is bound to have 

a s t i f f en ing ef fect upon the end fo lds , therefore increasing the fo ld 

length. 

The number of fo lds and the average collapse forces obtained in 

the c a l c u l a t i o n s are compared w i t h e x p e r i m e n t a l r e s u l t s and 

p r e d i c t i o n s f rom Alexander (1960) (eqs. 7.2, 7.3) i n t a b l e 7.3. 

Alexander's theory gives poor p r e d i c t i o n s as t o the f o l d leng th f o r 

the t h i c k tubes w i t h high t 0 / o r a t i o s . This i s probably due to the 

inadequacy for th icker tubes of Alexander 's h i n g e / t h i n s h e l l model. 

The average load p r e d i c t i o n s are c l ose r to the exper imenta l va lues. 

One must bear in mind however t h a t a f a i r l y a r b i t r a r y average value 

for Y was selected for equation (7.2). 

Tube geometry 

(A) ID=19.05mm,to=1-64mm 'L=50-8mr r 

(B) ID=19.05mm,to=1#17mn i jL=50#8mr i l 

(C) 0D=38.1 m m , t o = 1 - 6 5 m m ' L = 5 0 - 8 m i T 

(D) 0D=25.4 mm,to = 0 .95m m 5 L = 2 5 > 4 m n i 

no. of fo lds 

eq(7.3) 

4.8 

5.6 
3.4 

2.7 

expt 

3 

4 
3 

2.5 

calc 

3 

3.5 
2.25 

2 

av. col lapse load 

eq(7.2) 

(*) 
9.6 

5.8 
13.6 

4.8 

expt 

11.9 

6.5 
13.8 

4.5 

calc 

12.2 

7.7 
16.1 

4.8 

(*) for Y=175MPa, corresponding to 0.8 s t ra in 

Table 7.3:'Summary of r e s u l t s f o r axi symmetr ic a x i a l c rump l i ng of 

tubes from theory by Alexander(1960), exper iments , and 

numerical ca lcu la t ions . 



Anal. 

TUBE1 

TUBE2 

TUBE3 

TUBE4 

TUBE5 

TUBE6 

TUBE7 

TUBE8 

TUBE9 

TUBE10 

TUBE11 

TUBE12 

TUBE 13 

TUBE14 

TUBE15 

TUBE16 

TUBE17 

TUBE18 

TUBE19 

TUBE20 

Geom. 

( + ) 

E 

E 

E 

E 

E 

E 

E 

E 

F 

B 

B 

B 

A 

D 

A 

A 

A 

A 

C 

C 

Mesh 

(++)' 

Coarse,60x3 

Coarse,60x3 

Coarse,60x3 

Coarse,60x3 

Coarse,60x3 

Coarse,60x3 

Coarse,60x3 

Coarse,60x3 

Coarse,100x3 

Coarse,65x3 

Coarse,65x3 

Medium,130x3 

Medium,90x3 

Medium,80x3 

Fine, 124X3 

Medium,90x3 

Coarse,45x3 

Medium,90x3 

Coarse,60x3 

Fine, 124x4 

Element 

type 

(&*) 

MTQC 

MTQC 

MTQC 

MTQC 

MTQC 

MTQ 

MTQC 

MTQC 

MTQC 

MTQC 

MTQ 

MTQC 

MTQC 

MTQC 

MTQC 

CST 

MTQC 

MTQ 

MTQC 

MTQC 

Frict. 

(W 

0.0 

0.1 

0.2 

0.3 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

Platen 

veloc. 

(m/s) 

40(A) 

40(4) 

40 U ) 

40(4) 

40 

40 

20 

10 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

20 

no of 

folds 

2 

3 

3 

3 

3 

3 

3 

3 

5 

3 

3 

3 1/2 

3 

2 

3 

1/2 

2 1/2 

3 

2 

2 1/2 

Avge. 

Load P 

[kN) (*) 

10.2 

11.7 

11.4 

11.4 

10.5 

9.9 

10.0 

9.8 

10.2 

7.2 

7.3 

7.7 

12.9 

4.8 

12.2 

22.2 

14.3 

11.5 

14.8 

16.1 

CPU 

(sec) 

(**) 

1040 

1414 

1364 

962 

1079 

1196 

1758 

3474 

5333 

2263 

3734 

7167 

3352 

2664 

8641 

2346 

1035 

12882 

1530 

7732 

(+) Geometry A: ID=19.05mm, t0=1.64mm, L=50.8mm 

Geometry B: ID=19.05mm, t0=1.17mm, L=50.8mm 

Geometry C: 00=38.10mm, t0=1.65mm, L=50.8mm 

Geometry D: 00=25.40mm, tQ=0.95mm, L=25.4mm 

Geometry E: 0D=38.10mm, t0=1.22mm, L=50.8mm 

Geometry F: 0D=38.10mm, t0=1.22mm. L=88.9mm 

(++) For c l ass i f i ca t i on of meshes see section 7.3.2.1 

{&) Velocity was applied without i n i t i a l ramp for these cases 

{&&) See section 4.2 

(*) P = [JPdxj/L 
(**) CPU times on a CRAY-IS 

Table 7.4: Detai ls of numerical analyses for axial tube collapse 



The numerical model i s not cons t ra ined by beam or t h i n she l l 

assumptions, and therefore f inds no problems in modelling the th ick 

tubes, where in fact i t gives better predict ions. The load resul ts are 

o v e r s t i f f i n a l l cases; however, f o r the second and t h i r d tubes in 

t ab le 7.3 the r e l a t i v e l y la rge d i f f e r e n c e w i t h exper iment is due to 

the shorter, s t i f f e r incomplete fo lds at the end of the analysis. 

7.4 MEDIUM VELOCITY (176m/s) TUBE IMPACT ANALYSIS 

The impact of medium v e l o c i t y hard and s o f t m i s s i l e s on 

structures has been the object of some in teres t in the past few years. 

Extensive programs of experimental research have been undertaken at 

Meppen, FDG (e.g. Rudiger and Riech, 1983) and W i n f r i t h , UK (e.g. 

Barr, 1983a, 1983b). The research is concerned wi th "medium" and "low" 

veloci ty impact, for which s t ra in - ra te ef fects are moderate. 

A crashing a i r c r a f t consists p r i nc ipa l l y of a soft tubular body 

w i t h some sma l le r hard or semihard p a r t s . I t has been model led at 

W i n f r i t h and Meppen by t u b u l a r capped s tee l m i s s i l e s w i t h added 

masses, impact ing at v e l o c i t i e s between 150 and 300 m/s. In general 

the impact of such missi les produced concertina type crumpling. The 

axial d i rec t ion of the impact and the extensive crumpling produced has 

prompted some one-di mensional empi r i c a l - n u m e r i c a l s o l u t i o n s (e.g. 

Bignon and Riera (1979), Hurley (1983)). These s o l u t i o n s , however, 

depend heavily on the in te rp re ta t ion of empir ical data from crushing 

loads and s t r a i n - r a t e e f f e c t s on col lapse mechanisms, not providing 

therefore true general predict ions. 

The numerical procedures described in th i s thesis (chapter 4) are 

sui table for modelling the extensive axisymmetric crumpling produced 

by the impact of a tubular steel miss i le against a r i g i d surface. Such 

an a n a l y s i s , corresponding to W i n f r i t h exper iment no. M i l l , i s 

described here. 

7.4.1 DESCRIPTION OF PROBLEM 

The missile (fig. 7.44) consists of a thin spherical cap followed 
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by a pipe and, e v e n t u a l l y , an end mass. The pipe i s composed of two 

parts, each wi th a d i f f e ren t thickness and s l i g h t l y d i f f e ren t material 

propert ies. 

The m i s s i l e was cons t ruc ted of co ld r o l l e d m i l d s tee l sheet ; 

apart from th i s f ac t , other e x p l i c i t material data were scarce, being 

l imi ted to the values of the y i e l d stress and elongation at f a i l u r e : 

thickness Yield stress Elongation at f a i l u r e 

1.6 mm 308 MPa 29% 

2 . 5 mm 270 MPa 24% 

The m i s s i l e impacts the t a r g e t plane no rma l l y , w i t h an ax ia l 

v e l o c i t y of 176 m/s. The t a r g e t plane i s assumed both r i g i d and 

f r i c t i o n l e s s . 

7.4.2 NUMERICAL IDEALIZATION 

Because of the axisymmetric character of the problem, MTQC toro ida l 

elements (sect . 4.2.3) can be used to represent the body. The mesh 

cons is ted of 3901 nodes and 5771 t r i a n g u l a r plane c e l l s (2887 MTQC 

elements) ( f i g u r e s 7.45 and 7.46). The mesh was prepared us ing two 

quadr i la tera ls through the thickness of the spherical cap. In the tube 

sect ion, three quadr i la tera ls through the thickness wi th approximate 

shape r a t i o 2:1 were taken , in order to represent accu ra te l y the 

concertina fo ld ing expected. For a small furthermost part of the tube 

where bending was not expected, the mesh was coarsened to two and one 

quadr i la tera ls through the thickness. The makeweight was represented 

with larger so l id elements having the appropriate mass. The target was 

modelled as a r i g i d , f r i c t i o n l e s s stonewal l . 

The steel material was assumed to have a density of 7800 Kg/m3, 

and an e l a s t i c - p l a s t i c s t r e s s - s t r a i n behaviour. The e l a s t i c par t i s 

characterized by a Young's modulus of 210 GPa and a Poisson's ra t i o of 

0.3. 

The p l a s t i c i t y was described by a Von Mises Yield surface and an 
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associative law. However, the radius of the Von Mises cy l inder is not 

constant but changes wi th p las t i c s t ra in and w i th s t ra in - ra te . At each 

t ime, the e f fec t i ve stress at y i e l d is affected by a power law s t r a i n -

hardening and a power law c o r r e c t i o n f o r s t r a i n - r a t e s e n s i t i v i t y , 

according to the expression: 

Y = A e n ( l +e m /B) 

where A and n describe the hardening behaviour 

for t0=i.6mm (thinner pipe) A=495 MPa, n=0.17 

for t 0
= 2 - 5 m m ( th icker pipe) A=470 MPa, n=0.17 

8 and m represent the s t ra in - ra te s e n s i t i v i t y 

for both cases B=40.4 sec-m, m=0.2 

7.4.3 NUMERICAL RESULTS 

The ana lys i s was performed on a PRIME 750 computer. I t was 

pursued up t o a t ime of 2.5 msec, being i n t e r r u p t e d then because of 

two reasons: 

- the computer costs had become excessive, over 39 CPU days; 

- fur ther deformation of the miss i le would only involve repe t i t i on of 

the concertina fo ld ing mechanism already observed; not much addi t ional 

information would be gained from the cont inuat ion of the analys is . 

The number of computational cycles was 111336. Successive views 

of the deformed mesh are presented in f igures 7.47 - 7.53 (deta i ls of 

m i s s i l e t i p ) and 7.54 (general v iews) . I t can be seen t ha t a f t e r an 

i n i t i a l stage in which the spherical cap buckled inwardly ( f i g . 7.47), 

the res t of the deformat ion cons i s t s of the p i l i n g up of successive 

concer t ina f o l d s (18 in t o t a l ) . A l l the f o l d s were produced in the 

thinner tube sect ion, the th icker part not having being reached at the 

time the analysis was stopped. 

The resul tant of the contact forces between miss i le and stonewall 

i s p l o t t e d i n f i g u r e 7.55 as a h i s t o r y of t i m e . The i n i t i a l p a r t , up 

to 0.2 msec, corresponds to the buckling of the spherical cap, and is 

cha rac te r i zed by being wery "no isy" . The remainder cons i s t s of a 
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Figure 7.52: TUBULAR MISSIVE IMPACT - VIEW OF TIP AT 2.0 msec 

Figure 7.55, TUBULAR MISSILE IMPACT - VIEW OF TIP AT 2.5 msec 
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number of peaks, two per f u l l conce r t i na f o l d . For each f o l d two 

hinges are formed: one external and one i n te rna l . The bending in these 

hinges corresponds to the less s t i f f periods (val leys), whi le for the 

per iods in between, the loads are t r a n s m i t t e d by the much s t i f f e r 

axial compression mechanism (peaks). 

The fo rce was i n t e g r a t e d w i t h respect to t i m e , o b t a i n i n g the 

impulse h i s t o r y ( f i g u r e 7.56). This c o n s t i t u t e s a much smoother and 

nearly l inear curve. I t indicates a f a i r l y constant collapse force. 

V e l o c i t y h i s t o r i e s are p r e s e n t e d i n f i g u r e 7.57 f o r two 

representative points. One corresponds to the back end of the m iss i l e , 

showing an approx imate ly constant average d e c e l e r a t i o n . The second 

point corresponds to the folded sect ion, showing an i n i t i a l stage of 

slow deceleration fol lowed by a sudden stoppage in the formation of 

the f o l d , continuing at zero ve loc i ty thereaf ter . 

F ina l l y , h is to r ies of e f fec t i ve stresses are given in f igure 7.58 

f o r a po in t near to the nose which has su f fe red s u b s t a n t i a l p l a s t i c 

deformations in the fo ld ing , and for another point near the back which 

has behaved e l a s t i c a l l y , without reaching y i e l d . 

7.4.4 DISCUSSION 

The concer t i na ax isymmetr ic c rump l ing has been model led on a 

large scale without any computational problems (apart from the cost) , 

proving the robustness of the numerical algori thms and computer code. 

The sequent ia l f o l d i n g process i s apparen t l y yery s i m i l a r to the 

mechanisms al ready discussed f o r q u a s i - s t a t i c a n a l y s i s . However, 

cons iderab ly l a rge r c rush ing load l e v e l s were observed f o r medium 

veloc i ty crumpling than for quas i -s ta t ic s i tua t ions . 

The experiment no. M i l l at W in f r i t h produced 23 folds in the th in 

sec t ion of the tube and 6 f u r t h e r 4- lobed f o l d s in the t h i c k e r 

s e c t i o n , l eav ing an u n d i s t o r t e d tube leng th of 550 mm; con tac t t ime 

was 9.5 msec (data from Hurley, 1983). 

The average f o l d leng th obta ined in the exper iment from the 



244 

20 

-20 

-40 

-60 

-80 

-100 

-120 

-140 

-160 

-180 

i 1 1 r 

Node 400 (in crumpled 
portion) 

Node 3890 
(back end of projectilejL 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 

T i me (msec) 

Figure 7.57s TUBULAR MISSILE IMPACT - VELOCITY HISTORIES 

500 

450 -

400 

350 -

300 

250 

200 

150 

100 -

50 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 

T I me (msec) 

Figure 7.58, TUBULAR MISSILE IMPACT - STRESS HISTORIES 



th inner pipe f ront section was 

n"exp = 27.2 mm 

This compares with an average value (based on 18 folds), obtained in 

the calculations of 

^calc = 25.5 mm 

while the value obtained from equation (7.3) by Alexander (1960) is 

fiAlex = 29.3 mm 

I n i t i a l l y i t was at tempted to solve the problem w i t h a mesh of 

MTQ e lemen ts ( s e c t . 4 .2 .2 ) . A l t h o u g h these e l e m e n t s worked 

s a t i s f a c t o r i l y for low ve loc i ty crumpl ing analyses ( sec t i on 7.3.4.4), 

they proved u n s u i t a b l e f o r t h i s problem in which the v e l o c i t y of 

deformat ion i s s u b s t a n t i a l l y g rea te r . Tangl ing over of the mesh 

occurred in the f o rma t i on of the f i r s t f o l d , producing a negat ive 

volume in one of the t r i a n g u l a r c e l l s on the inner s ide of the f o l d 

( f igs . 7.59a, 7.59b). This caused the computations to become unstable 

immediately ( f i g . 7.59c). 

Previously, s im i l a r problems had been often observed when using 

Mixed D i s c r e t i z a t i o n procedures (MTQ i n 2-D, MTB in 3-D) f o r very 

large deformat ion analyses, c o n s t i t u t i n g a drawback f o r these 

procedures. I t was th i s par t i cu la r case which motivated the present 

research to f ind a corrected element; t h i s element should preserve the 

capab i l i t y for modelling incompressible p las t i c f low of the ex is t ing 

Mixed Discret izat ion elements, but generating a greater resistance to 

tangl ing over. The resul t was the corrected mixed elements (MTQC in 2-

D, MTPC in 3-D) presented in sec t ion 4.2.3, which have been used f o r 

th i s analysi s. 

The h i s t o r y of loads o b t a i n e d f r om the c a l c u l a t i o n s was 

substant ia l ly "nois ier" than the exper imenta l h i s t o r y ( f i g u r e 7.55). 

Two factors are the cause for th i s d i f ference. F i r s t l y the f i n i t e r ise 

t ime for the load-cel l used in the experiments w i l l have probably made 

i t miss some of the very f a s t t r a n s i e n t s , a l though u n f o r t u n a t e l y no 
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data are a v a i l a b l e t o q u a n t i f y t h i s hypothes is . Secondly, the great 

number of a r t i f i c i a l contact springs in the numerical model may have 

introduced some addit ional noise in to the e las t i c folded region, which 

work ing in a l i n e a r n o n - d i s s i p a t i v e reg ime, is n a t u r a l l y "no isy" on 

i t s own. 

However, the time-average values of numerical and experimental 

loads proved to be remarkably close: 

^expt = 338.4 kN 

Pcalc = 3 2 9 - 6 k N 

These averages were taken for the period comprised between 0.2 and 2.5 

msec, which corresponds to the ax isymmet r i c c rump l ing of the tube 

af ter the i n i t i a l buckling of the spherical cap. 

The dynamic i n e r t i a force from the decelerat ion of the folds was 
computed according to eqn. (7.8); the ve loc i ty v( t ) introduced in t h i s 

equat ion was the h i s t o r y of v e l o c i t i e s at the top node (node 3890, 

f i g u r e 7.57). The t ime average of t h i s i n e r t i a f o r c e , again r e f e r r e d 

to the period 0.2-2.5 msec, was 

Pi = 179.3 kN 

which, subs t rac ted from the value of the t o t a l f o r c e , P=329.6 kN, 

according to eqn. (7.5) leaves an average crushing force of 

pc = 150.3 kN 

From these values i t i s apparent t h a t the dynamic e f f e c t s were 

important for t h i s problem, the i n e r t i a forces being approximately 1/2 

of the ove ra l l t o t a l f o r c e s , and of the same order as the forces 

or ig inated by the crumpling process i t s e l f . 

I t is not possible to compute precisely the mean crushing force 

resu l t ing from experiment as no data ex is t for ve loc i ty h is tor ies of 

the miss i le during the impact. However, the fo l low ing considerations 

support the assumption of the exper imenta l and numerical c rush ing 

forces being very s im i l a r . According to eqn. (7.9) the crushing force, 



pc , may be expressed as the di f ference between the to ta l force, P, and 

the i ne r t i a force, P #̂ i t was seen above that the di f ference between 

experimental and numerical average to ta l forces was small (2.6%). On 

the other hand, f o r the per iod ana lyzed, the dece le ra t i on has been 

small (from 176m/s to 152m/s, see f i g . 7.57). The close match between 

numerical and experimental impulse h is to r ies ( f i g . 7.56) suggests that 

a s im i l a r l y small deceleration would have happenned in experiment. As 

the i n e r t i a f o r c e , P^ depends on the v e l o c i t y (eqn. 7.8), i t may be 

presumed t h a t exper imenta l and numerical c rush ing fo rces w i l l be 

s im i la r w i th in an error of approximately 10%. 

This "medium" ve loc i ty crushing force is considerably larger than 

that obtained from s ta t i c tests performed on ident ica l tubes (Hurley, 

1983), which y ie lded a value of 

pstat = 6 1 kN 

This s ta t i c value is consistent wi th the generally good quas i -s ta t i c 

load p r e d i c t i o n s from eqn. (7.2) (Alexander, 1960). Cons ider ing an 

average value of Y = 476 MPa, which corresponds to 0.8 s t r a i n , 

pAlex = 7 1 k N 

Of th i s di f ference (150.3kN medium ve loc i t y , 61kN quas i - s ta t i c ) , 

the s t ra in - ra te material hardening accounts only fo r a minor part . The 

s t ra in - ra te enhancement may be approximated as fo l lows. 

- time for the formation of one complete f o l d (two hinges): 

t = (h-2tQ)/v = (27.2-3.2)10~3m/(170m/s) = 1.41xl0"4 (sec.) 

- average s t ra i n - ra te : 

A6= 2x0.8 = 1.6 

e= A- = l . lx lO 4 (sec-1) 
At 

- s t ra in - ra te enhancement fac to r : 

1+ em /8 = l + ( l . l x l 0 4 ) ° - 2 / 4 0 . 4 = 1.16, 



which corresponds to an increase of only 16%. 

Even al lowing for errors in these s imp l i f i ed considerat ions, the 

dif ference between quasi -s tast ic and medium ve loc i ty crushing loads is 

too la rge (approx. 100%) t o be exp la ined by s t r a i n - r a t e m a t e r i a l 

hardening alone. This resul t is extremely in te res t ing and suggests an 

i n h e r e n t l y s u b s t a n t i a l l y g rea te r energy d i s s i p a t i o n f o r medium 

v e l o c i t y tube c r u m p l i n g , even f o r r a te - i nsens i t i ve mater ia ls . I t is 

a l l the more notab le s ince e x t e r n a l l y no apparent d i f f e r e n c e s are 

apprec ia ted between the crumpled geometr ies f o r low and medium 

veloc i ty impact. 

An exp lana t ion f o r t h i s may be found in the pronounced non-

l i n e a r i t y of the process. A f i n a l geometry which i s s u b s t a n t i a l l y 

the same may be a r r i v e d at by d i s t i n c t pa ths , assoc ia ted w i t h 

d i f f e ren t amounts of dissipated energy. 

7.5 CONCLUSIONS 

1- Tubes subjected to axial collapse are e f f i c i e n t energy absorbers 

for impact s i tua t ions . Experimental knowledge from the bahaviour of 

Aluminium tubes under quas i -s ta t ic axial col lapse was obtained from 

t e s t s c a r r i e d out main ly by Ghani (1982). Microhardness t e s t s in 

sect ions of the crumpled tubes a l lowed the de te rm ina t i on of y i e l d 

s t ress (Y) d i s t r i b u t i o n s around the f o l d s . These d i s t r i b u t i o n s were 

useful as a check of the numerical p red ic t ions . 

2- The numerical mode l l i ng of q u a s i - s t a t i c , ax isymmet r ic ax ia l 

collapse of tubes was approached wi th the non-l inear e x p l i c i t F in i te 

D i f f e rence code (chapter 4). The numer ica l p r e d i c t i o n s ( l o a d -

displacement curves , deformed geomet r ies , s t ress d i s t r i b u t i o n s ) 

compared well w i th experiment. The numerical code used const i tu tes a 

robust s o l u t i o n method f o r mode l l i ng what i s a h i g h l y complex non­

l i n e a r process, w i t h very la rge s t r a i n s and a r b i t r a r y tube- tube and 

tube-platen contacts. The simple, sound material model employed, based 

on Von Mises i s o t r o p i c p l a s t i c i t y (chapter 6 ) , a lso performed 

exce l len t l y . 



3- An e x p l i c i t (dynamic) s o l u t i o n method was applied successful ly 

for modelling the quas i -s ta t ic col lapse, using ve loc i ty scal ing in a 

contro l led manner. 

4- The numer ical model proved s e n s i t i v e to mesh r e f i n e m e n t , 

specia l ly in short tubes wi th few folds in the crumpling mechanism, 

for which end ef fects are important. An overal l tendency for ove rs t i f f 

predict ions ( fo ld lengths too large) was detected. Convergence towards 

experimentally observed behaviour was achieved with mesh refinement. 

5- The choice of appropriate elements for the numerical model was 

essential for successful predic t ions. CST elements (section 4.2.1) are 

t o t a l l y u n s u i t a b l e . CMTQ elements (sec t ion 4.2.3) prov ided the best 

results and the most robust meshes. 

6- A medium veloc i ty (176m/s) impact of a long tubular p r o j e c t i l e , 

ocassioning large-scale crumpling, was modelled successful ly, a lbe i t 

at a high cost i n computer resources. Resul ts compare we l l w i t h 

exper iment , and i n d i c a t e s u b s t a n t i a l l y g rea te r l e v e l s of energy 

d iss ipat ion in the crumpling process than for quas i -s ta t i c co l lapse. 
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8.1 CONCLUSIONS 

1. Exp l i c i t F in i te Difference techniques, as used in th i s work, are 

advantageous for non- l inear, short durat ion t ransient analysis (wave 

propagation type). They can be also useful in slow loading but steeply 

non - l i nea r problems, in order to take advantage of t h e i r robustness 

and ease of implementation. In general, theoret ica l so l id mechanics 

concepts and equations can be implemented s t ra igh t fo rward ly . Many of 

the more r igorous s t ress update procedures necessary f o r i m p l i c i t 

methods need not be used, as t ime-steps are res t r i c ted to very small 

values for s t a b i l i t y . A Lagrangian mesh together wi th a Cauchy stress 

- v e l o c i t y s t r a i n f o r m u l a t i o n are app rop r i a te f o r low - medium 

ve loc i ty , large s t ra in e l as t i c - p l as t i c problems wi th contacts. 

2. Meshes based on constant s t r a i n t r i a n g l e s or t e t r ahed ra (CST) 

prov ide unacceptable r e s u l t s f o r incompressible p las t i c f low. Mixed 

Discret izat ion procedures based on averaging the vo l ume t r i c s t r a i n s 

from several t r i a n g l e s / t e t r a h e d r a (Mart i and Cundall, 1982) provide 

accurate predict ions and are easi ly implemented in to computer codes; 

however, t a n g l i n g over of the mesh can occur in problems w i t h very 

la rge d i s t o r t i o n s . A c o r r e c t i o n method i s proposed here (sec t ion 

4.2.3) f o r Mixed D i s c r e t i z a t i o n procedures, which main ta ins t h e i r 

a b i l i t y fo r accurate p las t i c f low model l ing, recovering the resistance 

to t a n g l i n g over of CST meshes. Hence, a more robust and equa l l y 

accurate a l te rna t i ve to Mixed D iscre t iza t ion is obtained. 

3. Tension tests are a simple and re l i ab le means for obtaining large 

s t r a i n ma te r i a l s t r e s s - s t r a i n behaviour (chapter 6). Exper imental 

da ta , together w i t h some t h e o r e t i c a l i n t e r p r e t a t i o n and r e s u l t s of 

numerical s imulat ion tes ts , allowed a representative cons t i t u t i ve law 

for Aluminium to be establ ished. A simple Von Mises p l a s t i c i t y model 

wi th power law hardening was employed. Results fo r more complex tube 

c rump l ing s imu la t i ons showed the appropr ia teness of t h i s m a t e r i a l 

model. 

4. Numerical mode l l i ng of tube co l l apse mechanisms through 

axisymmetric sequential crumpling was successful ly achieved (chapter 

7) wi th the Exp l i c i t F in i te Difference code developed (chapter 4). The 

contact algorihtms employed were successful and e f f i c i e n t in modell ing 



the i n t e r f a c e between tube f o l d s and between tube and p l a t ens . The 

resu l t ing load-displacement curves and deformed geometr ies compare 

we l l w i t h exper imenta l data f o r q u a s i - s t a t i c tube c o l l a p s e . Stress 

d i s t r i b u t i o n s i n c r u m p l e d t ube s e c t i o n s were compared w i t h 

experimental data derived from microhardness t es t s , wi th good resu l ts . 

The i n f l u e n c e of some impor tan t aspects of the numerical model was 

ascertained: 

- the model behaviour is ove rs t i f f (folds too long) i f the mesh is not 

s u f f i c i e n t l y re f ined ; 

- the choice of app rop r ia te element types (CMTQ, sec t . 4.2.3) was 

essential fo r e f f i c i e n t and successful model l ing; 

- The ve loc i ty scal ing used (wi th in the low ve loc i ty regime) allowed 

mode l l i ng of a q u a s i - s t a t i c phenomenon w i t h an e x p l i c i t , dynamic 

procedure; 

- end e f f e c t s (deformat ion and f o l d i n g at tube edges) may have a 

s i g n i f i c a n t i n f l u e n c e in some cases, being d i f f i c u l t t o represent 

appropriately wi th in a la rger , global model. 

5. Analysis of a steel tube medium ve loc i ty (176 m/s) impact (sect. 

7.4) provided resul ts which compare well wi th experimental data. The 

deformed geometry was s i m i l a r t o the low v e l o c i t y case, but the 

crushing force was found to be s i g n i f i c a n t l y higher. 

6. Computational costs f o r tube co l l apse s i m u l a t i o n s are h i gh , 

although affordable for special ized safety or impact ca lcu la t ions . 

8.2 SUGGESTIONS FOR FURTHER RESEARCH 

A number of options are avai lable for researchers interested in 

the topics dwelt upon in t h i s thes is . Theoretical work along some of 

the l ines suggested below would enhance the a p p l i c a b i l i t y of numerical 

s i m u l a t i o n procedures to n o n - l i n e a r processes. Other suggest ions 

invo lve the use of s i m i l a r numerical methods as proposed here, 

widening the f i e l d of appl icat ions to other non-l inear problems. 



8 .2 .1 THEORETICAL AND NUMERICAL DEVELOPMENTS 

The choice of an o b j e c t i v e s t ress ra te f o r l a rge s t r a i n ana l ys i s 

i s not un i que ( s e c t i o n 2 .5 .1) . G e n e r a l l y , t h e use of a p a r t i c u l a r 

s t ress ra te i s pos tu la ted and app l i ed to the e x i s t i n g ma te r i a l data. 

I t wou ld be u s e f u l t o s t udy t h e i n f l u e n c e of t he d i f f e r e n t c h o i c e s 

a v a i l a b l e , b o t h i n t h e o r e t i c a l t e r m s and f o r t h e p r a c t i c a l 

i m p l i c a t i o n s in la rge s t r a i n eng ineer ing ana lyses . 

The ma te r i a l models employed here are r e s t r i c t e d to s imp le Von 

Mises p l a s t i c m a t e r i a l s w i t h hardening. This cou ld be extended to more 

s o p h i s t i c a t e d m a t e r i a l models ( s e c t . 2.2.7) a p p r o p r i a t e f o r m e t a l s 

( d i s t o r t i o n of y i e l d s u r f a c e , y i e l d and f a i l u r e s u r f a c e s ) , s o i l s 

( d i l a t a t i o n , n o n - a s s o c i a t i v i t y , n o n - c y l i n d r i c a l y i e l d s u r f a c e s , 

m u l t i p l e s u r f a c e i d e a l i z a t i o n s ) or c o n c r e t e ( c r a c k i n g and f a i l u r e 

c r i t e r i a , n o n - c y l i n d r i c a l y i e l d s u r f a c e s ) . 

More r i g o r o u s a l t e r n a t i v e s e x i s t t o t h e s i m p l e p l a s t i c r a d i a l 

r e t u r n and s t r e s s upda te a l g o r i t h m s employed here ( s e c t i o n s 4 .5 .2 , 

4 .5 .4 ) . I t wou ld be u s e f u l t o s t u d y t h e a p p l i c a b i l i t y and p r a c t i c a l 

i n f l uence of these a l t e r n a t i v e s w i t h i n e x p l i c i t and i m p l i c i t codes. 

E lement by E lement methods (Hughes, L e v i t and Winget (1983b) , 

O r t i z , P insky and T a y l o r (1983)) a re p r o m i s i n g new a l t e r n a t i v e s f o r 

n o n - l i n e a r t r a n s i e n t a n a l y s i s . The main problem seems to be accuracy, 

and pub l ished a p p l i c a t i o n s are r e s t r i c t e d to smal l academic examples. 

Such a l g o r i t h m s can be i m p l e m e n t e d w i t h o u t much e f f o r t i n t o t h e 

a r c h i t e c t u r e of an e x p l i c i t code, in order to study t h e i r behaviour in 

p r a c t i c a l terms f o r l a rge scale eng ineer ing computa t ions . 

For p e n a l t y method c o n t a c t m o d e l s , f u r t h e r r e s e a r c h w o u l d be 

u s e f u l i n o r d e r t o i n c r e a s e t h e r o b u s t n e s s and e f f i c i e n c y of t h e 

a l g o r i t h m s . Th i s c o u l d i n c l u d e a d a p t a t i v e methods f o r d e t e r m i n i n g 

c o n t a c t s t i f f n e s s e s , and i m p r o v e d search a l g o r i t h m s f o r a u t o m a t i c 

de tec t i on of c o n t a c t s . 



E x p l i c i t t ime i n t e g r a t i o n procedures could be used much more 

e f f i c i e n t l y f o r s t a t i c or q u a s i - s t a t i c problems through the use of 

adapta t ive dynamic r e l a x a t i o n techniques (Underwood, 1983). In f ac t , 

r e l a x a t i o n techniques are a lso being proposed l a t e l y f o r use in 

equa t i on - so l v i ng w i t h i n i m p l i c i t methods (e.g. Belytschko, 1983). I t 

i s poss ib le t h a t a r e l a x a t i o n a l g o r i t h m cou ld be found t h a t was 

appropr ia te both f o r i m p l i c i t e q u a t i o n - s o l v i n g and f o r e x p l i c i t 

dynamic r e l a x a t i o n . This would make poss ib le the h i gh l y d e s i r a b l e 

combinat ion of e f f i c i e n t e x p l i c i t and i m p l i c i t solut ion techniques 

w i th in the same algori thm and computer code. 

8.2.2 ADDITIONAL APPLICATIONS 

The thermomechanical coupling algor i thm developed can be readi ly 

applied to study coupled phenomena, such as metal forming processes 

wi th generation of heat from p las t i c work and the consequent thermal 

stresses and material softening. 

Further use can be made of tension t es t s , coupled wi th numerical 

s imulat ions, fo r more deta i led invest igat ions in to material behaviour 

and f a i l u r e modes in me ta l s , and e f f e c t s such as the i n f l u e n c e of 

pores and mechanisms fo r void growth. 

The numerical techniques employed here could also be used for the 

study of l a t e r a l compression of tubes or tube assembl ies (sect . 

7.2.3.1), tube i nve rs i on (sect . 7.2.3.4), or diamond f o l d co l l apse (3-

D model) (sect. 7 .2 .3 .3 ) . 

The c rush ing fo rce f o r medium v e l o c i t y impact (sec t . 7.4) was 

s i g n i f i c a n t l y h igher than t h a t expected f o r low v e l o c i t y or q u a s i -

s t a t i c c o l l a p s e , both from t h e o r e t i c a l and experimental resu l ts . I t 

would be very in te res t ing to study, e x p e r i m e n t a l l y and n u m e r i c a l l y , 

the i n f l uence of impact v e l o c i t y on c rush ing mechanisms, both f o r 

ra te- insens i t i ve and rate-dependent mater ia ls . 
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