
Abstract
The objective of this work is to develop adequate and efficient models for cal-

culation of vertical dynamic traffic load effects on railway track infrastructures, and
applications for evaluating the comparative performance of ballast and slab track de-
signs.

The calculations are based on dynamic finite element models with direct time inte-
gration and contact algorithms between wheel and rail in order to consider the rail-car
interaction. For capturing the dynamic effects is an adequate representation of ir-
regularities of the track. The 2D spatial discretization were selected as the optimal
decisions.

The results obtained include wheel-rail contact forces, forces transmitted to the
bogie by primary suspension and forces transmitted to the infrastructure (sleeper or
slab) by the railpads.

Keywords: Dynamic response, Wheel-rail contact, track irregularities, Finite ele-
ment, Vehicle-track interaction.

1 Introduction

High-speed railway systems have been built and operated in several countries. These
are considered a competitive alternative to other modes of transport for medium dis-
tances. Spain has now in operation over 1500 km of high-speed railway lines with
international gauge, with ballast track except at singular locations such as tunnels.
There is an increasing need for research in order to improve the safety, reliability and
efficiency of track infrastructure. The mechanical characteristics of the track and the
choice between ballast and slab track are matters of debate, taking into account flying
of ballast, maintenance and durability features, cost, and dynamic vertical behavior
of track [1]. In this work we focus on issues related to the mechanical actions on the
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track structure, specifically vertical dynamic loads.
The evaluation of the dynamic response of railway track subjected to high speed

train loading represents one of the main structural issues associated specifically to
the structure design of high speed railway. The dynamic behavior of railway track
structures induced by the traffic is influenced by the interaction between the train
and the complete track structure, and also between several elements of the rolling
stock. Recently, the increasing of the operating speed of trains has received a lot of
attention from researchers. As for the commercial operating speed, TGV in France
and Shinkansen in Japan are being operated at about 300 km/h, ICE in Germany at
280 km/h, KTX in Korea at 300 km/h, and CRH3 in People Republic Of China is due
to be operated at 350 km/h.

As the operating speed of the train becomes higher and reaches 350 km/h or more,
accuracy in the analysis of vehicle-track interaction becomes an important factor to
be considered in the railway track design. An important number of research works on
this subject have contributed to relevant technical advantces in this area. In order to
simulate the vehicle-track interactive dynamics many kinds of plane models [2–8] in
which the train is treated as independent body and 3D models [3, 6, 8–12] in which
the train is modeled more realistcally have been presented. As the complexity of the
model increases, the analyses will require larger computer resources and time. There-
fore, the optimisation of modelling both the rail track and vehicles is an important
issue.

In the present paper, a dynamic computational model for the vehicle and track sys-
tem is formulated by means of finite element method. Two-dimensional vehicle and
track models are selected as the three-dimensional dynamic effects of vehicles do not
affect significantly the vertical track dynamics. Wheel to rail contact is included as
a linearized Hertz model. The track profile irregularity is modeled as a stationary er-
godic random processes. The focus of this work is on obtaining reliable estimates of
vertical dynamic loads on track infrastructure, namely the rail and the individual rail-
pad supports. For this purpose analyses of dynamic response is performed in the time
domain. The amplitudes of vibration and the interaction forces between the vehicle
and rail due to the random irregularity of the track vertical profile and different train
speeds have been obtained and compared at several tracks and ranges of train speeds.

2 Finite Element Models

2.1 Vehicle model

Railway vehicles are complex mechanical systems with several degrees of freedom,
including linear and non-linear springs and various types of dampers. During the
passage of vehicles several type of forces are applied on the track structure: vertical
forces, horizontal longitudinal forces and horizontal transverses forces (Fig. 1).

In order to study the vertical dynamic track, many vehicle models have been pre-
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Figure 1: Forces applied to track structure:
F1z vertical force, F1x horizontal longitudinal
force, F1y horizontal tranverse force.

sented in the literature: from a simple model as a moving vertical force to 3D complex
model of multybody with many degrees of freedom. In this study, taking into account
the 3D models are very complex, very expensive models for a computational analy-
sis, and their frequencies outside the range of interest in frequencies for the vertical
dynamic analysis, so we have developed several 2D models (see Fig. 3): one degree
of freedom model (or 1/2 axle), two degrees of freedom model (1/4 bogie), and three
degrees of freedom model (1/8 vehicle). The 1/2 axle model (see Fig. 3a)is a discrete
mass-spring system which contains a single mass that is the mass of 1 / 2 axle-wheel
mr, the spring is presented as a Hertzian spring acting in the wheel/rail contact area
kH , and the static force acting on the mass is the weight of bogie and car (mb +mc)g.
The 1/4 bogie model (see Fig. 3b) is a two-mass model, in which the other mass (mass
of bogie mb) is added over the mass in the 1/2 axle model that simulates the struc-
ture of the bogie, between the two masses is located the vehicle’s primary suspension
(k1, c1), and the static force acting on the superior mass is the weight of the car mcg.
The 1/8 vehicle model (see Fig. 3c) is a three-mass model, in which the other mass
(mass of car mc) is added over the masses of the 1/4 bogie model that simulates the
box of the vehicle, the vehicle’s secondary suspension (k2, c2) is located between the
upper masses. In this study the data used for these models is represented in the table. 1
which represent the typical high speed vehicle with an axle load of 17 T. The results
obtained with these model have been analyzed and compared in order to select the
more adequate one for analyzing the relevant variables of design.

Using the Hertz theory of normal elastic contact [13] and an assumption that the
wheel and the rail are elastic bodies and made of the same material with elastic mod-
ulus E and the Poisson coefficient ν. The nonlinear relationship between normal
contact force Fk and relative vertical deformation δk is expressed

Fk = δ
3/2
k CH where CH =

2E

3(1− ν2)
(rwrr)

1/4 (1)

being rw the radius wheel and rr the radius railhead. The value of the Hertz coefficient
CH used in this study is 1.04 N/m3/2

The 2D contact model between the wheel and the rail is mechanically presented by
vertical contact stiffness kH . The relation between the normal contact force Fk and a
small deformation δk can be linearly represented by a linearized stiffness coefficient
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Parameter Value
1/2 Mass of wheel-axle (kg) mr = 758
1/2 Mass of bogie (kg) mb = 1395
1/8 Mass of car body (kg) mc = 8500
Hertz spring stiffness (KN/mm) kH = 1460
Primary suspension k1 = 0.805 kN/mm

c1 = 0.375 · 104 Ns/m
Second suspension k2 = 0.45125 kN/mm

c2 = 0.40625 · 104 Ns/m

Table 1: Parameters of the vehicle models per wheelset

kH as

kH =
dFk

dδk
=

3

2
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1/3
k C

2/3
H (2)

Then, for the solution of the contact problem in which the motion is constrained can
be obtained using the penalty method.

Figure. 2 shows the comparison of dynamic response of the two models of con-
tacts: Hertz nonlinear contact and linearized contact. The results are very similar,
demonstrating the validity of linearized contact model which is used in this study.
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Figure 2: Deformation of the center of the rail for Hertz and linearized contact model with
v=360km/h

Figure 4 shows the displacement of the rail obtained in the dynamic calculation for
vehicle speed of 360 km/h with the considered models. The 1/2 axle model does not
represent the reality of the passage of vehicle on the track (see fig. 3a), this model has
only a single natural frequency (approx. 220 Hz) next to one of the frequencies of the
Rheda track (approx. 230 Hz, see table 3) and the excitation frequency at 360 km/h
with sleeper space of 0.60 m (approx. 166.66 Hz), while the real vehicle has the other
relevant frequencies on the behavior of the track besides this (see table 2). Because the
structural response obtained with the 1/4 bogie is very similar to the results obtained
using the 1/8 vehicle model (see Fig. 4). Also, comparing the structural responses of
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(a) One degree of freedom (b) Two degrees of freedom (c) Two degrees of freedom

Figure 3: Vehicle models

a model with a 1 / 4 bogie and model with two 1 / 4 bogie, the results are very similar
(see Fig. 5), so opting for the vehicle model , the 1/4 bogie model is selected, because
it’s simplicity.

Model Eigenfrequencies (Hz)
1/2 axle model 220.9 (wheelset)
1/4 bogie model 220.9 (wheelset)

3.82 (bogie)
1/8 vehicle model 220.9 (wheelset)

3.82 (bogie)
0.36 (car body)

Table 2: Eigenfrequencies of vehicle models

Ballast Rheda
Mode 1 110 (Hz) - -
Mode 2 288 (Hz) 230 (Hz)
Mode 3 1200 (Hz) 1200 (Hz)

Table 3: Frequencies of relevant modes for track considered

2.2 Track model

Generally, the dynamic analysis may be carried out by models for the solution in
the time-domain or models for the solution in the frequency-domain. A time-domain
model of the track shown in Fig. 6 has been developed in the framework of this re-
search [4, 5]. It fulfills the two basic requirements of linearity and periodicity with
respect to the track’s length direction. The finite element method was used to ana-
lyze the track system. The track system consists of the rail, the pads, the fastener, the
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Figure 4: Deformation of the center of the rail under several vehicle models with v=360km/h
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Figure 5: Deformation of center of the rail with one axle of 1/4 bogie and with two axle of 1/4
bogie with v=360km/h, for uncoupled dynamic action on track

sleeper, the ballast and the foundation in the case of ballast track model (see Fig. 6a);
and the slab, the concrete bed and the foundation in the case of slab track model (see
Fig. 6b).

The rails are simulated as continuous Timoshenko beams that are discretely sup-
ported on the pads and the fasteners represented by linear springs and damping ele-
ments. Each element of the rail is a two-node element with three degrees of freedom
per node. Based on the Timoshenko beam theory [4], the equations (3) (4) relate the
vertical deflection and the rotation at any point of the rail with the applied forces:

ρAẅ −GAs(w
′′ − θ′) = −

∑
F (x, t) (3)

ρIθ̈ −GAs(w
′ − θ)− EIw′′ = 0 , (4)

being w(x) the vertical deflection of the rail, θ(x) the rotation of the rail, ρ the rail
density, A the area of the cross-section, As = κA the reduced shear area, G the shear
modulus, E the Young’s modulus, I is the second moment of area of the cross section,
and κ the Timoshenko shear coefficient. In this study, the rail type UIC 60 is used,
with a value κ = 0.4. Primes represent spatial derivatives (e.g. w′ = dw/dx) and dots
time drivatives (e.g.θ̈ = d2θ/dt2)

The sleepers tie the two rails together providing their monolithic actions on the
track. These are positioned between the rails and the ballast or slab and the sleepers
are modeled with mass point element.
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(a) Ballast track model (b) Slab track model

Figure 6: Track model

For the ballast track model, the subballast is not considered, the ballast is consid-
ered as a piramid trunk in order to calculate the effective stiffness and the damping
coefficients. In this model, the ballast is considered a vertical spring with damping
and the continuity of the ballast in the longitudinal direction is not considered. The
foundation is point supports.

We have monitored many point of infrastructure to get the results more adequate
about the vertical dynamic response on the infrastructure: the contact point between
the vehicle and the rail to obtain the vertical acceleration and then to obtain wheel
rail contact force, 13 points of railpad supports to measure forces transmitted to the
infrastructure.

3 Generation of track irregularities by random pro-
cess

Track irregularities play an important role in the dynamic response due to passing
trains. Generally, the track irregularities can be approximately represented as station-
ary and ergodic random processes in space due to its random nature, where the rail
quality information is characterized by the power spectral density (PSD) functions
[14]. The PSD function depends on the route frequency (Ω), which is expressed as in
the equation (5).

Ω =
2π

L
, (5)

where L is the length of the irregularities (or wave length).
The analytical expression of the PSD functions for the generation of track irreg-

ularities have been proposed by many organizations and institutes for application in
practice, such as CSD, CKD, SZD of the Czech Republic, SNCF of France, FRA of
the USA [14]. Thus, the different PSD functions are used depending on the charac-
teristics of the rail used in each country. In this study, the PSD function proposed by
H. Claus and W. Schiehlen [15] is used. The analytical PSD function are published as
one− sided density functions:
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ΦV (Ω) = A
Ω2

c

(Ω2
r +Ω2)(Ω2

c +Ω2)
(6)

where ΦV (Ω) stand for the vertical profile density. The values of the constant factors
Ωr, Ωc are:

Ωr = 0.0206 (rad/m) (7)

Ωc = 0.8246 (rad/m) (8)

The scalar factor A is chosen so as to obtain a mean square of the irregularities in
the range of 1 to 1.5 mm

A = 3.65 · 10−6 (rad m) (9)

With the PSD function obtained by the analytical expression, the vertical track
irregularities can be produced by the inverse Fourier transform shown as in the fol-
lowing equation (10):

r(x) =
√

2
N−1∑
n=0

Ancos(Ωnx+ ϕn) (10)

considering the spectral density of N discrete frequencies Ωn. The independent ran-
dom phase angles ϕn (n=0,1,.....,N-1) are uniformly distributed in the range [0,2π].
The frequencies are set to

Ωn = n∆Ω = n
Ωmax −Ωmin

N
(11)

where the Ωmax, Ωmin are the lower and upper limits in which the PSD function is
defined. The coefficients An are used as in [15]:

Ao = 0, (12)

A1 =

√
(

1

2π
Φ(∆Ω) +

4

12π
Φ(0))∆Ω (13)

A2 =

√
(

1

2π
Φ(2∆Ω) +

1

12π
Φ(0))∆Ω (14)

An =

√
(

1

2π
Φ(Ωn)∆Ω (15)

In this study, the vertical irregularities rail were developed according to the equa-
tion (10) with two cases of wavelength range which are defined in prEN 13848-5 [16]
( D1 is wavelength in range [3m,25m], D2 is very short wavelength in range [0.05 m,
3m] )
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Figure 7: Vertical track irregularities with respect to passing distance

Figure 7 shows the vertical irregularities used in this study for two cases of wavelength
range.

To verify the correct generation of track irregularities, the reverse process is taken
place, that is obtaining the PSD as the Fourier transform of the autocorrelation func-
tion of track irregularities generated according to the Eq. (10) and compare with the
curve of the PSD used analytical in Eq. (5). Figure 8 shows some power spectral
densities of the generated irregularities profiles and the analytical ones.
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Figure 8: Power spectral densities
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4 Cases studied and aplications

4.1 Ballast track

The classical ballast track basically consists of a platform made up of the rails and
sleepers which are supported on ballast. The ballast rests on a sub-ballast layer which
forms the transition layer to the platform (see Fig 9). The ballast track was modeled
using 2D finite elements, the track length studied in the models is 90.0 m, model-
ing only a single rail. The different components of track modeled were the platform
through a coefficient of ballast, the sleepers, the rail pads and the rail.
The model parameters are listed in Table 4.

Ballast

Sleeper
Rail

Railpads

Figure 9: The scheme of cross section of ballast track

Dimensions
Model length 90.0 m
Ballast thickness 40 cm
Separation pads 0.60 m

Properties
Rail UIC60
Pads stiffness (kp) 100 kN/mm
Damping pads (cp) 0.015 kN s/mm
Ballast stiffness (kb) 100 kN/mm
Damping ballast (cb) 0.0123 kN s/mm
Mass of half sleeper (mt/2) 160 kg
Point foundation stiffness (kc) 80 kN/mm

Table 4: Model parameters of ballast track

4.2 Rheda track

The Rheda system has been under continuous development since its first application
in 1970. The Rheda 2000 Slab Track System has resulted from the ongoing devel-
opment of the well known German Rheda system.The slab track Rheda 2000 scheme
considered is shown in figure 11. The slab track Rheda 2000 was modeled using 2D
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Figure 10: Detail of the finite element mesh ballast track

finite elements. The track length studied in this case is 97.5 m, considering only a
single rail. The different components of track modeled were the platform through a
coefficient of ballast, the concrete slab, the sleepers, the rail pads and the rail.
The model parameters are listed in Table 5.

Figure 11: The scheme of longitudinal and cross section of Rheda 2000 track

Dimensions
Model length 97.5 m
Slab thickness 24 cm
Separation pads 0.65 m

Properties
Rail UIC60
Elastic modulus of concrete (Eh) 34 GPa
Pads stiffness (kp) 40 kN/mm
Damping pads (cp) 0.008 kN s/mm
Ballast module platform (kc) 80 kN/mm
Mass of half sleeper (mt/2) 69 kg

Table 5: Model parameters of slab track Rheda 2000

4.3 Aftrav track

The slab track Aftrav scheme considered for modeling is shown in figure 13. The
slab track Aftrav was modeled using 2D finite elements. The track length studied
in this case is 93.55 m, considering only a single rail. The different components of
track modeled were the platform through a coefficient of ballast, the concrete slab, the
sleepers, the rail pads and the rail.
The model parameters are listed in Table 6.
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Figure 12: Detail of the finite element mesh slab track Rheda 2000

Figure 13: The scheme of longitudinal and cross section of Aftrav track

Dimensions
Model length 93.55 m
Slab thickness 20 cm
Separation pads 0.65 m

Properties
Rail UIC60
Elastic modulus of concrete (Eh) 27 GPa
Pads stiffness (kp) 40 kN/mm
Damping pads (cp) 0.008 kN s/mm
Ballast module platform (Kc) 80 kN/mm
Mass of half sleeper (mt/2) 69 kg

Table 6: Model parameters of slab track Aftrav

pad

UIC60

o

P

m r

mb

contact

slab

primary
suspension

slab joint

ballast module

Figure 14: Detail of the finite element mesh slab track Aftrav
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4.4 Dynamic responses of vehicle and track

The results obtained of the computations are shown in Figure 15- 20. These include
the wheel-rail contact force, forces transmitted to the bogie by the primary suspension,
and forces transmitted to the infrastructure (sleeper or slab) by the railpads, and the
envelope of the results.
Figure 15 shows the wheel-rail contact force in the ballast model when the vehicle
travels along the track with distinct vertical random irregularities at 360 km/h and
compare with the static force. The dynamic amplification factor at this velocity is
1.337 for the D11 profile, and is 1.398 for the D21 profile.
Figure 16 shows the forces transmitted to the railpads in the Rheda model when the
vehicle travels along the track with distinct vertical random irregularities at 300 km/h.
Figure 17 shows the envelope of the results of the dynamic amplification factor of
contact force in distinct profile of Ballast model and Rheda model with the D1 profile.
With increase of the train speed, the dynamic amplification factor increases too. The
maximum factor is obtained at the velocity 360 km/h in both profile.
Figure 18 shows the envelope of the results of the dynamic amplification factor of
forces transmitted to railpads in D1 profile of Ballast model and Rheda model.
Figure 19 shows the envelope of the results of the forces transmitted to the bogie by
the primary suspension in distinct profile of Ballast model. The maximum force value
is obtained at the velocity 320 km/h in D1 profile.
Figure 20 shows the envelope of the results of the dynamic amplification factor of
forces transmitted to the bogie by the primary suspension in D1 profile of Rheda
model. This shows that increasing speed is not always increase the forces correspond-
ing. The maximum factor value is obtained at the velocity 280 km/h in D1 profile.
In view of the graphics, we derive the following results:

• The vertical interaction forces between the wheel and the rail, forces transmitted
to the bogie by the suspension and forces transmitted to the infrastructure by the
railpads are very sensitive both to irregularity of the track and train speeds.

• The dynamic responses are very similar for all track models when the random
track irregularities are used with the wavelengths between the normal range
[3m;25m] (see table. 7). But when using the irregularity of track with a very
short wavelengths in the range [0.05 m, 3m], the dynamic responses are very
dispersed for each track model, the Rheda track and the Aftrav track have better
behavior of others (see table. 7).

• The results of the Aftrav model and the Rheda model are similar, so in this paper
we only present the graphic results of the Rheda model.
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Model type Cont. D1 Cont. D2 Pads.D1 Pads. D2
Ballast 1.33 2.80 1.25 2.40
Rheda 2000 1.32 1.65 1.24 1.55
Aftrav 1.33 1.71 1.29 1.58

Table 7: Maximum dynamic amplification factor
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Figure 15: Wheel-rail contact force in distinct profile with vehicle speed v=360km/h of ballast
model.
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Figure 16: Forces transmitted to railpads in distinct profile with vehicle speed v=300km/h of
Rheda model.

5 Conclusion

In this study, a 2D finite element model for the analysis of high-speed railway interac-
tion was proposed, in which various improved finite elements were adopted to model
the structural constituents of railway.
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(b) Rheda track

Figure 17: Factor of dynamic amplification of contact force in D1 profile.
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(b) Rheda track

Figure 18: Factor of dynamic amplification of force transmitted to railpads in D1 profile.
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Figure 19: Force transmitted to the bogie by the primary suspension in D1 profile of Ballast
model.
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Figure 20: Dynamic amplification factor of forces transmitted to the bogie by the primary
suspension in D1 profile of Rheda model.

The track vertical profile irregularity is considered as stationary ergodic Gaussian
random processes, which is included in calculating the contact forces with the penalty
method [17]. The dynamic responses are very sensitive both to the track irregularities
and the vehicle speed.

The model reported in this paper is capable of predicting the dynamic responses of
both the vehicle and the rail track components. The model is also capable of examining
the influence of the properties of the rail track and the wagon components on the
contact force and other dynamic responses of the rail track and vehicle system.

The traditional ballast track has the similar dynamic behavior to other types of track
when the track has adequate quality.
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